国内某地区有1320个居民点,任意两个居民点间的距离已知,每个居民点的居民数已知,3个仓库的在居民点130,520,1020处。有一批应急物资A需要按人手一份尽快运送到所有居民手里。假设每个仓库中都有充足的物资A,它们已经按每600份一箱打包装在规格为长0.3米、宽0.3米、高0.3米的箱子里,由规格为长8.5米、宽3米、高3.5米的货车运送到居民点,在装卸货和运送过程中这些箱子都不拆封,因此每个居民点最终都收到整数箱的物资A。每辆货车从某个仓库装货后出发,在完成运送任务后返回出发地,车辆平均配速为60千米/小时,出发时间为上午8点,在中午13点左右休息两个小时不工作。货车在每个居民点的卸货时间是10分钟。当所有货车返回出发仓库,意味着整个物资运送工作完成。请安排货车进行物资的运送,使得在确保所有居民点都能在下午18:30前收到充足物资的条件下,所需货车的数量尽可能少且整个物资运送工作完成的时间尽可能早,用Python给出程序与结果

时间: 2023-06-27 19:04:31 浏览: 137
这是一个经典的物流配送问题,可以使用贪心算法或者动态规划求解。下面是使用贪心算法的做法: 1. 计算每个居民点需要的物资箱数,即向上取整(居民数/600)。 2. 对所有居民点按照需要的物资箱数从大到小进行排序。 3. 从第一个仓库出发,依次将物资箱运送到需要箱数最多的居民点,直到该居民点的需求被满足。然后返回仓库继续装载物资箱,直到所有居民点的需求被满足。 下面是Python程序实现: ```python import heapq # 计算两个居民点之间的距离 def distance(i, j): return distances[i][j] # 计算货车从i出发,前往j需要的时间 def time(i, j): return distance(i, j) / speed * 60 + unload_time # 计算货车从i出发,依次前往居民点列表中的点并返回仓库所需的时间 def total_time(i, residents): time = 0 for j in residents: time += time(i, j) i = j time += time(i, start) return time # 计算从i出发,依次前往居民点列表中的点并返回仓库所需的车辆数 def trucks(i, residents): total_boxes = sum(resident_boxes[j] for j in residents) return (total_boxes + boxes_per_truck - 1) // boxes_per_truck # 主函数 def deliver(): # 对所有居民点按照需要的物资箱数从大到小排序 residents = sorted(range(n), key=lambda i: -resident_boxes[i]) # 初始化每个居民点是否被满足 satisfied = [False] * n # 初始化每个仓库中还剩余的物资箱数 remaining_boxes = [total_boxes] * 3 # 初始化当前时间为早晨8点 current_time = start_time # 初始化货车出发点为仓库中的第一个 truck_start = 0 # 循环直到所有居民点都被满足 while not all(satisfied): # 找到下一个需要物资最多的居民点 next_resident = None for i in residents: if not satisfied[i]: if next_resident is None or resident_boxes[i] > resident_boxes[next_resident]: next_resident = i # 找到可以满足该居民点需求的仓库 for i in range(3): if remaining_boxes[i] >= resident_boxes[next_resident]: break # 计算从货车出发点到该仓库所需的时间 time_to_warehouse = time(truck_start, warehouse[i]) # 如果在下午6:30前能够完成任务,则将物资箱运送到该居民点 if current_time + time_to_warehouse + total_time(warehouse[i], [next_resident]) <= end_time: remaining_boxes[i] -= resident_boxes[next_resident] satisfied[next_resident] = True current_time += time_to_warehouse + total_time(warehouse[i], [next_resident]) # 否则,需要从该仓库出发前往其他需要物资的居民点 else: # 找到需要物资的居民点列表 residents_to_deliver = [next_resident] for j in residents: if not satisfied[j] and resident_boxes[j] <= remaining_boxes[i]: residents_to_deliver.append(j) if len(residents_to_deliver) == boxes_per_truck: break # 计算从该仓库出发运送物资到这些居民点并返回所需的车辆数和时间 t = trucks(warehouse[i], residents_to_deliver) time_to_deliver = total_time(warehouse[i], residents_to_deliver) # 如果在下午6:30前能够完成任务,则运送物资 if current_time + time_to_warehouse + time_to_deliver + t * rest_time <= end_time: remaining_boxes[i] -= sum(resident_boxes[j] for j in residents_to_deliver) for j in residents_to_deliver: satisfied[j] = True current_time += time_to_warehouse + time_to_deliver + t * rest_time truck_start = warehouse[i] # 否则,需要从下一个仓库出发 else: break return (trucks(0, range(n)), current_time - start_time) # 输入数据 n = 1320 distances = [[0] * n for _ in range(n)] resident_boxes = [0] * n total_boxes = 0 for i in range(n): resident_boxes[i] = int(input()) total_boxes += (resident_boxes[i] + 599) // 600 for i in range(3): warehouse[i] = int(input()) - 1 speed = 60 unload_time = 10 boxes_per_truck = 30 rest_time = 120 start_time = 8 * 60 end_time = 18 * 60 + 30 # 输出结果 trucks_needed, time_needed = deliver() print(trucks_needed) print("%.2f" % (time_needed / 60)) ``` 输入数据按照以下格式输入: ``` 居民点1的居民数 居民点2的居民数 ... 居民点1320的居民数 仓库1所在居民点编号 仓库2所在居民点编号 仓库3所在居民点编号 ``` 输出结果为所需货车数量和完成任务的时间,单位为小时。

相关推荐

zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

最新推荐

recommend-type

福建居民健康档案信息系统数据接口方案

本文档描述了居民健康档案信息系统的数据收集和服务的接口规范、网上挂号接口规范以及接口规范相关的错误处理、压缩处理、加密处理以及版本控制等。
recommend-type

居民区供水问题-数学建模

居民供水问题是贴近生活的实际问题。为了有效的利用和节约水资源,我们应该采取积极有效的办法,用所采集数据信息通过建立数学模型,来切实的解决居民的用水率、总用水量以及水泵工作的效率等问题。
recommend-type

基于居民健康大数据的肥胖与常见慢病关联规则分析

结果共对196 554名居民的健康数据进行分析,高血压的患病率(48.6%)明显高于冠心病(22.9%)和糖尿病(20.3%),51.0%的人至少患有其中一种慢病,10.6%的人同时患有该3种慢病。关联规则分析结果显示,超重与高血压、冠心病...
recommend-type

aiohttp-3.9.4-cp310-cp310-musllinux_1_1_s390x.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

架构师技术分享 支付宝高可用系统架构 共46页.pptx

支付宝高可用系统架构 支付宝高可用系统架构是支付宝核心支付平台的架构设计和系统升级的结果,旨在提供高可用、可伸缩、高性能的支付服务。该架构解决方案基于互联网与云计算技术,涵盖基础资源伸缩性、组件扩展性、系统平台稳定性、可伸缩、高可用的分布式事务处理与服务计算能力、弹性资源分配与访问管控、海量数据处理与计算能力、“适时”的数据处理与流转能力等多个方面。 1. 可伸缩、高可用的分布式事务处理与服务计算能力 支付宝系统架构设计了分布式事务处理与服务计算能力,能够处理高并发交易请求,确保系统的高可用性和高性能。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 2. 弹性资源分配与访问管控 支付宝系统架构设计了弹性资源分配与访问管控机制,能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。该机制还能够提供强大的访问管控功能,保护系统的安全和稳定性。 3. 海量数据处理与计算能力 支付宝系统架构设计了海量数据处理与计算能力,能够处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 4. “适时”的数据处理与流转能力 支付宝系统架构设计了“适时”的数据处理与流转能力,能够实时地处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 5. 安全、易用的开放支付应用开发平台 支付宝系统架构设计了安全、易用的开放支付应用开发平台,能够提供强大的支付应用开发能力,满足业务的快速增长需求。该平台基于互联网与云计算技术,能够弹性地扩展计算资源,确保系统的高可用性和高性能。 6. 架构设计理念 支付宝系统架构设计基于以下几点理念: * 可伸缩性:系统能够根据业务需求弹性地扩展计算资源,满足业务的快速增长需求。 * 高可用性:系统能够提供高可用性的支付服务,确保业务的连续性和稳定性。 * 弹性资源分配:系统能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。 * 安全性:系统能够提供强大的安全功能,保护系统的安全和稳定性。 7. 系统架构设计 支付宝系统架构设计了核心数据库集群、应用系统集群、IDC数据库交易系统账户系统V1LB、交易数据库账户数据库业务一致性等多个组件。这些组件能够提供高可用性的支付服务,确保业务的连续性和稳定性。 8. 业务活动管理器 支付宝系统架构设计了业务活动管理器,能够控制业务活动的一致性,确保业务的连续性和稳定性。该管理器能够登记业务活动中的操作,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。 9. 系统故障容忍度高 支付宝系统架构设计了高可用性的系统故障容忍度,能够在系统故障时快速恢复,确保业务的连续性和稳定性。该系统能够提供强大的故障容忍度,确保系统的安全和稳定性。 10. 系统性能指标 支付宝系统架构设计的性能指标包括: * 系统可用率:99.992% * 交易处理能力:1.5万/秒 * 支付处理能力:8000/秒(支付宝账户)、2400/秒(银行) * 系统处理能力:处理每天1.5亿+支付处理能力 支付宝高可用系统架构设计了一个高可用、高性能、可伸缩的支付系统,能够满足业务的快速增长需求,确保业务的连续性和稳定性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果

![Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果](https://file.51pptmoban.com/d/file/2018/10/25/7af02d99ef5aa8531366d5df41bec284.jpg) # 1. Matlab画图基础 Matlab是一款强大的科学计算和数据可视化软件,它提供了一系列用于创建和自定义图形的函数。本章将介绍Matlab画图的基础知识,包括创建画布、绘制线型以及设置基本属性。 ### 1.1 创建画布 在Matlab中创建画布可以使用`figure`函数。该函数创建一个新的图形窗口,并返回一个图形句柄。图形句柄用于对图形进
recommend-type

基于R软件一个实际例子,实现空间回归模型以及包括检验和模型选择(数据集不要加州的,附代码和详细步骤,以及数据)

本文将使用R软件和Boston房价数据集来实现空间回归模型,并进行检验和模型选择。 数据集介绍: Boston房价数据集是一个观测500个社区的房屋价格和其他16个变量的数据集。每个社区的数据包含了包括犯罪率、房产税率、学生-老师比例等特征,以及该社区的房价中位数。该数据集可用于探索房价与其他变量之间的关系,以及预测一个新社区的房价中位数。 数据集下载链接:https://archive.ics.uci.edu/ml/datasets/Housing 1. 导入数据集和必要的包 ```r library(spdep) # 空间依赖性包 library(ggplot2) # 可
recommend-type

WM9713 数据手册

WM9713 数据手册 WM9713 是一款高度集成的输入/输出设备,旨在为移动计算和通信应用提供支持。下面是 WM9713 的详细知识点: 1. 设备架构:WM9713 采用双 CODEC 运算架构,支持 Hi-Fi 立体声编解码功能通过 AC 链接口,同时还支持语音编解码功能通过 PCM 类型的同步串行端口(SSP)。 2. 音频功能:WM9713 提供了一个第三个 AUX DAC,可以用于生成监督音、铃声等不同采样率的音频信号,独立于主编解码器。 3. 触摸面板接口:WM9713 可以直接连接到 4 线或 5 线触摸面板,减少系统中的总组件数量。 4. 音频连接:WM9713 支持多种音频连接方式,包括立体声麦克风、立体声耳机和立体声扬声器。且可以使用无电容连接到耳机、扬声器和耳机,减少成本和 PCB 面积。 5. 模拟输入/输出:WM9713 提供了多个模拟输入和输出引脚,用于无缝集成与模拟连接的无线通信设备。 6. 设备控制:所有设备功能都可以通过寄存器访问来控制,实现了灵活的设备管理和配置。 7. 功率管理:WM9713 采用低功率设计,降低系统的功率消耗,提高系统的可靠性和续航能力。 8. 工业应用:WM9713 广泛应用于移动计算、通信、消费电子等领域,满足不同行业的需求和应用场景。 9. 技术参数:WM9713 的技术参数包括工作温度、供电电压、时钟频率、数据传输速率等,满足不同应用场景的需求。 10. 应用场景:WM9713 可以应用于智能手机、平板电脑、笔记本电脑、智能家居设备等移动计算和通信产品,满足不同行业的需求和应用场景。 WM9713 是一款功能强大、灵活性高的输入/输出设备,广泛应用于移动计算和通信领域,为不同行业的应用场景提供了可靠的解决方案。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依