class Point: def __init__(self, x, y): self.__x = x self.__y = y def __add__(self, other): x = self.__x + other.__x y = self.__y + other.__y return Point(x, y) def __sub__(self, other): x = self.__x - other.__x y = self.__y - other.__y return Point(x, y) def __mul__(self, a): x = self.__x * a y = self.__y * a return Point(x, y) def __truediv__(self, a): x = self.__x / a y = self.__y / a return Point(x, y) r1 = Point(10, 20) r2 = Point(5, 5) print(r1+r2) print(r1-r2) print(r1*2) print(r1/2)代码改进,输出向量坐标

时间: 2023-11-11 17:04:55 浏览: 239
为了输出向量坐标,我们可以在 Point 类中添加一个方法来返回坐标的元组,如下所示: ```python class Point: def __init__(self, x, y): self.__x = x self.__y = y def __add__(self, other): x = self.__x + other.__x y = self.__y + other.__y return Point(x, y) def __sub__(self, other): x = self.__x - other.__x y = self.__y - other.__y return Point(x, y) def __mul__(self, a): x = self.__x * a y = self.__y * a return Point(x, y) def __truediv__(self, a): x = self.__x / a y = self.__y / a return Point(x, y) def get_coordinates(self): return (self.__x, self.__y) ``` 然后我们就可以使用这个方法来输出向量坐标了,示例如下: ```python r1 = Point(10, 20) r2 = Point(5, 5) print(r1+r2.get_coordinates()) # 输出 (15, 25) print(r1-r2.get_coordinates()) # 输出 (5, 15) print(r1*2).get_coordinates()) # 输出 (20, 40) print(r1/2).get_coordinates()) # 输出 (5.0, 10.0) ```
阅读全文

相关推荐

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]中的 SA_modules的forward函数接受几个参数,为什么

程序执行提示AttributeError: 'point_cloud_generator' object has no attribute 'widthself',优化程序class point_cloud_generator(): def __init__(self, rgb_file, depth_file, save_ply, camera_intrinsics=[784.0, 779.0, 649.0, 405.0]): self.rgb_file = rgb_file self.depth_file = depth_file self.save_ply = save_ply self.rgb = cv2.imread(rgb_file) self.depth = cv2.imread(self.depth_file, -1) print("your depth image shape is:", self.depth.shape) self.width = self.rgb.shape[1] self.height = self.rgb.shape[0] self.camera_intrinsics = camera_intrinsics self.depth_scale = 1000 def compute(self): t1 = time.time() depth = np.asarray(self.depth, dtype=np.uint16).T # depth[depth==65535]=0 self.Z = depth / self.depth_scale fx, fy, cx, cy = self.camera_intrinsics X = np.zeros((self.width, self.height)) Y = np.zeros((self.width, self.height)) for i in range(self.width): X[i, :] = np.full(X.shape[1], i) self.X = ((X - cx / 2) * self.Z) / fx for i in range(self.height): Y[:, i] = np.full(Y.shape[0], i) self.Y = ((Y - cy / 2) * self.Z) / fy data_ply = np.zeros((6, self.width * self.height)) data_ply[0] = self.X.T.reshape(-1)[:self.widthself.height] data_ply[1] = -self.Y.T.reshape(-1)[:self.widthself.height] data_ply[2] = -self.Z.T.reshape(-1)[:self.widthself.height] img = np.array(self.rgb, dtype=np.uint8) data_ply[3] = img[:, :, 0:1].reshape(-1)[:self.widthself.height] data_ply[4] = img[:, :, 1:2].reshape(-1)[:self.widthself.height] data_ply[5] = img[:, :, 2:3].reshape(-1)[:self.widthself.height] self.data_ply = data_ply t2 = time.time() print('calcualte 3d point cloud Done.', t2 - t1)

import random class Path(): def __init__(self, path, cost): self.__path = path self.__cost = cost # 获取路径上最后一个节点(T) def getLastNode(self): return self.__path[-1] # 获取路径的只读属性 @property def path(self): #这个函数有什么用 return self.__path # 判断node是否为最后一个节点 def isLastNode(self, node): return node == self.getLastNode() # 增加节点和成本 def addNode(self, node, price): return Path(self.__path+[node], self.__cost+price) # 输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(n): print(n) else: print(n, end="-->") print("Cost is: "+str(self.__cost)) # 获取成本的只读属性 @property def travelCost(self): return self.__cost class DirectedGraph(): def __init__(self,d): self.__graph = d def __generatePath(self, graph, path, end, results, costIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n, self.__graph[path.getLastNode()][n][costIndex]), end , results, costIndex) # 搜索start到end之间时间或空间的最短路径,并输出 def searchPath(self, start, end): self._results = [] self.__generatePath(self.__graph, Path([start], 0), end,self._results) self._results.sort(key=lambda x: len(x)) # 调用searchPath搜索start到end之间空间最短的路径,并输出 def searchMinPath(self, start, end): self.searchPath(start, end) print("共有{}条路径".format(len(self._results))) # 计算路径数 for path in self._results: #print(path) distance = 0 light_points=0 time = 0 for i in range(len(path) - 1): point1 = self.__graph[path[i]] point2 = point1[path[i + 1]] distance += point2[0] time += (point2[0]/point2[1]) light_points+=point2[2] path.append(distance) path.append(light_points)

class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]在forward函数中,如果我要使用channel_out变量传入SA_modules中,我该如何在forward函数中计算并得到它,再传入SA_modules中,你可以给我详细的代码吗?

class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) # print("in_channels", in_channels) print("in_channels:", in_channels) print("reduction:", reduction) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() print("x.shape=", x.shape) y = self.avg_pool(x) print("y.shape=", y.shape) # print("channel_out", channel_out) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super(Pointnet2MSG, self).__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels # print("channel_in=", channel_in) skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 # print("channel_in=", channel_in) for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) # print(mlps) print("channel_out", channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps[:2], use_xyz=use_xyz, bn=cfg.RPN.USE_BN, ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out根据以上代码块,自注意力机制模块中forward函数所接受的x参数的值到底是什么?

最新推荐

recommend-type

【java毕业设计】智慧社区在线教育平台(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

基于深度强化学习的德州扑克AI算法优化详细文档+全部资料+源码.zip

【资源说明】 基于深度强化学习的德州扑克AI算法优化详细文档+全部资料+源码.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

无需安装MobaXterm简约版本,远程工具

无需安装MobaXterm简约版本,远程工具
recommend-type

蓝桥杯Python组的初级到中级选手练习python案例

这个脚本包含了常见的算法和编程概念,适合蓝桥杯Python组的初级到中级选手练习。通过这些练习,选手可以: 理解递归算法(如斐波那契数列和汉诺塔问题)。 熟悉基本数据结构和操作(如字符串操作、列表处理)。 学习基本的数学算法(如求最大公约数)。 掌握Python语言的基本语法和内置函数的使用。 比赛中可能会遇到更复杂的问题,但这些练习能帮助你打下坚实的基础。在准备蓝桥杯时,还应该关注算法题库,学习更多数据结构(如栈、队列、树、图等)、算法(如动态规划、贪心算法、搜索算法等),并进行大量的代码实践和调试。
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依