uart带fifo,接收模块,发送模块,控制模块的verilog代码及其测试代码

时间: 2023-08-20 18:07:29 浏览: 54
以下是一个带有FIFO的UART接收器和发送器以及控制模块的Verilog代码及其测试代码: ```verilog module uart( input clk, input reset, // 发送端口 output tx, input [7:0] data_in, input send_data, input send_enable, // 接收端口 input rx, output [7:0] data_out, output reg data_valid, // 控制端口 input [1:0] baud_rate, input [7:0] data_threshold, output reg tx_busy, output reg rx_full, output reg rx_overflow ); // FIFO深度 localparam FIFO_DEPTH = 16; // 定义FIFO状态和数据宽度 typedef struct { reg [7:0] data; reg valid; } fifo_entry_t; // 定义FIFO数组 reg [FIFO_DEPTH-1:0] fifo_ptr; fifo_entry_t fifo[FIFO_DEPTH]; // 初始化FIFO指针 initial begin fifo_ptr = 0; end // 发送状态机 reg [3:0] send_state; localparam SEND_IDLE = 4'd0; localparam SEND_START = 4'd1; localparam SEND_DATA = 4'd2; localparam SEND_PARITY = 4'd3; localparam SEND_STOP = 4'd4; reg send_parity; reg send_stop; // 发送寄存器 reg [7:0] send_data_reg; reg [3:0] send_bits_left; // 初始化发送状态机 always @(posedge clk) begin if (reset) begin send_state <= SEND_IDLE; end else begin case (send_state) SEND_IDLE: begin if (send_enable) begin tx <= 0; send_data_reg <= data_in; send_bits_left <= 8; send_parity <= 1; send_stop <= 1; send_state <= SEND_START; end end SEND_START: begin tx <= 0; send_state <= SEND_DATA; end SEND_DATA: begin tx <= send_data_reg[0]; send_data_reg <= {send_data_reg[6:0], 0}; send_parity <= ~send_parity; send_bits_left <= send_bits_left - 1; if (send_bits_left == 0) begin send_state <= SEND_PARITY; end end SEND_PARITY: begin tx <= send_parity; send_state <= SEND_STOP; end SEND_STOP: begin tx <= send_stop; send_state <= SEND_IDLE; end endcase end end // 接收状态机 reg [3:0] recv_state; localparam RECV_IDLE = 4'd0; localparam RECV_START = 4'd1; localparam RECV_DATA = 4'd2; localparam RECV_PARITY = 4'd3; localparam RECV_STOP = 4'd4; reg recv_parity; reg recv_stop; // 接收寄存器 reg [7:0] recv_data_in; // 初始化接收状态机 always @(posedge clk) begin if (reset) begin recv_state <= RECV_IDLE; data_valid <= 0; end else begin case (recv_state) RECV_IDLE: begin if (!rx) begin recv_state <= RECV_START; recv_data_in <= 0; recv_parity <= 1; recv_stop <= 1; end end RECV_START: begin recv_state <= RECV_DATA; end RECV_DATA: begin recv_data_in <= {recv_data_in[6:0], rx}; recv_parity <= ~recv_parity; recv_state <= RECV_PARITY; end RECV_PARITY: begin if (recv_parity == rx) begin recv_state <= RECV_STOP; end else begin recv_state <= RECV_IDLE; rx_overflow <= 1; end end RECV_STOP: begin recv_stop <= rx; recv_state <= RECV_IDLE; if (fifo_ptr != FIFO_DEPTH-1) begin fifo[fifo_ptr].data <= recv_data_in; fifo[fifo_ptr].valid <= 1; fifo_ptr <= fifo_ptr + 1; end else begin rx_full <= 1; end end endcase if (fifo_ptr <= data_threshold) begin rx_full <= 0; end end end // 从FIFO中提取数据 always @(posedge clk) begin if (reset) begin data_out <= 0; data_valid <= 0; end else begin if (fifo[fifo_ptr].valid) begin data_valid <= 1; data_out <= fifo[fifo_ptr].data; fifo[fifo_ptr].valid <= 0; fifo_ptr <= (fifo_ptr == FIFO_DEPTH-1) ? 0 : fifo_ptr + 1; end else begin data_valid <= 0; end end end // 通过波特率计算发送时钟周期 reg [7:0] baud_cycles; always @* begin case (baud_rate) 2'd0: baud_cycles = 10416; 2'd1: baud_cycles = 5208; 2'd2: baud_cycles = 2604; 2'd3: baud_cycles = 1302; endcase end // 发送时钟计数器 reg [7:0] send_clk_count; // 发送模块 always @(posedge clk) begin if (reset) begin send_clk_count <= 0; tx_busy <= 0; end else begin if (send_enable) begin if (send_clk_count < baud_cycles) begin send_clk_count <= send_clk_count + 1; end else begin send_clk_count <= 0; end tx_busy <= 1; end else begin send_clk_count <= 0; tx_busy <= 0; end end end endmodule // 测试代码 module uart_test; // 时钟模块 reg clk; always #5 clk = ~clk; // 重置模块 reg reset; initial begin reset = 1; #10 reset = 0; end // UART模块 wire tx; wire [7:0] data_out; wire data_valid; wire rx; wire tx_busy; wire rx_full; wire rx_overflow; reg [7:0] data_in; reg send_data; reg send_enable; reg [1:0] baud_rate; reg [7:0] data_threshold; uart dut( .clk(clk), .reset(reset), .tx(tx), .data_in(data_in), .send_data(send_data), .send_enable(send_enable), .rx(rx), .data_out(data_out), .data_valid(data_valid), .baud_rate(baud_rate), .data_threshold(data_threshold), .tx_busy(tx_busy), .rx_full(rx_full), .rx_overflow(rx_overflow) ); // 发送数据 initial begin // 发送一个字节 send_data = 1; send_enable = 1; data_in = 8'h57; #500; send_enable = 0; // 发送另一个字节 send_data = 1; send_enable = 1; data_in = 8'hAB; #500; send_enable = 0; end // 模拟接收数据 initial begin // 第一个字节 #1000; assert(data_valid); assert(data_out == 8'h57); #10; assert(!data_valid); // 第二个字节 #1000; assert(data_valid); assert(data_out == 8'hAB); #10; assert(!data_valid); // 结束测试 #1000 $finish; end endmodule ``` 该代码实现了一个带有16字节FIFO的UART发送器和接收器以及一个控制模块。发送器和接收器使用状态机来解码和编码字节,并将它们存储在FIFO中。控制模块负责生成发送时钟,并监视FIFO的状态以检测接收器的溢出和FIFO的满状态。在测试代码中,发送两个字节并验证接收器是否正确接收它们。

相关推荐

最新推荐

recommend-type

yolov5-face-landmarks-opencv

yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的。 本套程序根据https://github.com/deepcam-cn/yolov5-face 里提供的训练模型.pt文件。转换成onnx文件, 然后使用opencv读取onnx文件做前向推理,onnx文件从百度云盘下载,下载 链接:https://pan.baidu.com/s/14qvEOB90CcVJwVC5jNcu3A 提取码:duwc 下载完成后,onnx文件存放目录里,C++版本的主程序是main_yolo.cpp,Python版本的主程序是main.py 。此外,还有一个main_export_onnx.py文件,它是读取pytorch训练模型.pt文件生成onnx文件的。 如果你想重新生成onnx文件,不能直接在该目录下运行的,你需要把文件拷贝到https://github.com/deepcam-cn/yolov5-face 的主目录里运行,就可以生成onnx文件。
recommend-type

setuptools-0.6c8-py2.5.egg

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望