J1939协议0x0c000003是控制什么的

时间: 2023-12-14 08:02:06 浏览: 133
J1939协议中,标识符(PGN)0x0C000003对应的是发动机转速数据。这个标识符包含3个字节的数据,其中第1字节为0x0C,表示数据类型为发动机参数;第2和第3字节为0x00和0x03,表示具体的参数为发动机转速(RPM),单位为每分钟转数。 因此,当你收到标识符为0x0C000003的J1939报文时,就可以从数据域中获取发动机的转速数据,并使用该数据进行相应的处理。需要注意的是,J1939协议还规定了各种其他类型的发动机参数,每个参数都有自己的标识符和数据格式,因此在数据处理过程中,需要根据具体情况进行相应的解析和处理。
相关问题

j1939协议控制发动机转速,请帮我看下报文如何发送

控制发动机转速需要发送一个特定的命令,称为“请求命令”。在J1939协议中,请求命令的标识符为0x00FEEF,数据长度为3字节,其中第1字节为0x00,第2字节为0xFE,第3字节为0xEF。 发送请求命令后,发动机控制器将会响应一个带有转速数据的回复报文。回复报文的标识符为0x18FEF100,数据长度为8字节,其中第1字节为0x0CF1,第2字节为0x00,第3和第4字节为发动机转速数据,单位为每分钟转数(RPM)。 下面是一个简单的C代码示例,用于发送请求命令并接收回复报文: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <arpa/inet.h> #define J1939_PORT 2947 #define J1939_ADDR "127.0.0.1" int main(int argc, char *argv[]) { int sockfd; struct sockaddr_in addr; char buf[256]; // 创建socket sockfd = socket(AF_INET, SOCK_DGRAM, 0); if (sockfd == -1) { perror("socket"); exit(1); } // 设置目标地址和端口 memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(J1939_PORT); addr.sin_addr.s_addr = inet_addr(J1939_ADDR); // 发送请求命令 buf[0] = 0x00; buf[1] = 0xFE; buf[2] = 0xEF; sendto(sockfd, buf, 3, 0, (struct sockaddr *)&addr, sizeof(addr)); // 接收回复报文 memset(buf, 0, sizeof(buf)); recvfrom(sockfd, buf, sizeof(buf), 0, NULL, NULL); // 解析回复报文中的转速数据 if (buf[0] == 0xCF && buf[1] == 0xF1) { int rpm = (buf[2] << 8) | buf[3]; printf("Engine RPM: %d\n", rpm); } // 关闭socket close(sockfd); return 0; } ``` 请注意,上述代码仅提供了一个简单的示例,实际情况可能需要根据具体应用进行修改。同时,为了发送和接收J1939报文,还需要安装和配置相应的CAN总线适配器和软件。

使用C语言编写MODbus通讯协议0X06功能码教程

### 回答1: MODbus通讯协议0X06功能码用于向设备写单个寄存器的值。下面是使用C语言编写MODbus通讯协议0X06功能码的基本步骤: 1. 建立TCP/IP连接或串口连接,根据实际情况选择不同的通信方式。 2. 准备MODbus通信数据帧,包括地址码、功能码、寄存器地址、寄存器值等信息。具体格式可参考MODbus协议文档。 3. 使用C语言的socket或串口库函数发送数据帧给设备,并等待设备回复。 4. 解析设备回复的数据帧,判断是否发送成功。 以下是一个使用C语言编写MODbus通讯协议0X06功能码的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/socket.h> #include <arpa/inet.h> #define SERVER_IP "192.168.1.100" #define SERVER_PORT 502 int main(void) { int sockfd; struct sockaddr_in server_addr; // 创建socket sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd == -1) { perror("socket"); exit(EXIT_FAILURE); } // 设置服务器地址 memset(&server_addr, 0, sizeof(server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_addr.s_addr = inet_addr(SERVER_IP); server_addr.sin_port = htons(SERVER_PORT); // 连接服务器 if (connect(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) == -1) { perror("connect"); exit(EXIT_FAILURE); } // 准备发送数据帧 unsigned char send_buf[12] = {0x01, 0x06, 0x00, 0x01, 0x00, 0x03, 0x05, 0xF8}; unsigned char recv_buf[12] = {0}; // 发送数据帧 if (send(sockfd, send_buf, sizeof(send_buf), 0) == -1) { perror("send"); exit(EXIT_FAILURE); } // 接收设备回复的数据帧 if (recv(sockfd, recv_buf, sizeof(recv_buf), 0) == -1) { perror("recv"); exit(EXIT_FAILURE); } // 判断发送是否成功 if (memcmp(send_buf, recv_buf, sizeof(send_buf)) == 0) { printf("Write single register success.\n"); } else { printf("Write single register failed.\n"); } // 关闭socket close(sockfd); return 0; } ``` 在这个示例代码中,我们使用了socket库函数建立TCP连接,并发送了一个写单个寄存器的数据帧给设备。如果设备正确接收并处理了数据帧,我们就能得到一个回复数据帧,并判断发送是否成功。这个示例代码仅供参考,具体实现要根据不同设备的具体情况进行调整。 ### 回答2: MODbus通讯协议是一种常用的开放式通信协议,用于在不同设备之间进行通信。其中0X06功能码代表写单个寄存器。 首先,在使用C语言编写MODbus通讯协议之前,我们需要了解MODbus通讯协议的基本结构和规范。 MODbus通讯协议的基本结构包括:设备地址、功能码、寄存器地址、数据内容以及校验和等。0X06功能码用于写入单个寄存器。 下面是一个简单的C语言示例代码,用于实现MODbus通讯协议的0X06功能码: ``` #include <stdio.h> #include <stdlib.h> #define DEVICE_ADDRESS 0x01 // 设备地址 #define FUNCTION_CODE 0x06 // 功能码 #define REGISTER_ADDRESS 0x0001 // 寄存器地址 #define REGISTER_VALUE 0x0102 // 写入的寄存器值 int main() { unsigned char message[8]; // 存储MODbus报文的数组 // 构造MODbus报文 message[0] = DEVICE_ADDRESS; message[1] = FUNCTION_CODE; message[2] = (REGISTER_ADDRESS >> 8) & 0xFF; // 寄存器地址高位 message[3] = REGISTER_ADDRESS & 0xFF; // 寄存器地址低位 message[4] = (REGISTER_VALUE >> 8) & 0xFF; // 写入的寄存器值高位 message[5] = REGISTER_VALUE & 0xFF; // 写入的寄存器值低位 // 计算并添加校验和 unsigned int crc = calculateCRC(message, 6); message[6] = crc & 0xFF; message[7] = (crc >> 8) & 0xFF; // 将报文发送到MODbus设备 send(message, 8); return 0; } unsigned int calculateCRC(unsigned char *message, int length) { // 计算CRC校验和 unsigned int crc = 0xFFFF; for(int i = 0; i < length; i++) { crc ^= message[i]; for(int j = 0; j < 8; j++) { if(crc & 0x0001) { crc >>= 1; crc ^= 0xA001; } else { crc >>= 1; } } } return crc; } void send(unsigned char *message, int length) { // 将报文发送到MODbus设备的代码实现 // ... } ``` 这是一个简单的示例,用于演示如何使用C语言编写MODbus通讯协议的0X06功能码。在实际应用中,函数的具体实现需要根据实际情况进行编写,包括计算校验和和发送报文的代码实现。 希望对你有帮助! ### 回答3: 使用C语言编写MODbus通讯协议0X06功能码可以按照以下步骤进行: 1. 首先,需要定义一些常量和变量,包括MODbus通讯使用的端口号、从站地址等。可以使用宏定义或全局变量来实现。 2. 创建一个函数,用于发送MODbus命令帧。该函数需要设置好MODbus帧的各个字段,包括功能码0X06、从站地址、寄存器地址和数据等。 3. 创建一个函数,用于接收MODbus响应帧。该函数需要根据MODbus协议解析接收到的数据,并进行错误处理和数据提取等操作。 4. 在主函数中,调用发送MODbus命令帧的函数,传入相应的参数。 5. 接收MODbus响应帧,并调用接收函数进行解析和处理。 下面是一个简单的例子: ```c #include <stdio.h> #include <stdint.h> #define PORT_NUM 1 // MODbus通讯使用的端口号 #define SLAVE_ADDR 0x01 // 从站地址 #define FUNC_CODE 0x06 // 功能码 void sendModbusCommand(uint8_t regAddr, uint16_t regValue) { // 创建MODbus命令帧 uint8_t command[8]; command[0] = SLAVE_ADDR; // 从站地址 command[1] = FUNC_CODE; // 功能码 command[2] = regAddr >> 8; // 寄存器地址高字节 command[3] = regAddr & 0xFF; // 寄存器地址低字节 command[4] = regValue >> 8; // 数据高字节 command[5] = regValue & 0xFF; // 数据低字节 // 发送MODbus命令帧 // ... } void receiveModbusResponse() { // 接收MODbus响应帧 // ... // 解析响应帧,并进行相应的处理 // ... } int main() { uint8_t regAddr = 0x100; // 寄存器地址 uint16_t regValue = 0x1234; // 数据 sendModbusCommand(regAddr, regValue); // 发送MODbus命令帧 receiveModbusResponse(); // 接收并处理MODbus响应帧 return 0; } ``` 以上是一个简单的使用C语言编写MODbus通讯协议0X06功能码的教程。根据实际需要,还可以对代码进行进一步完善和优化。

相关推荐

最新推荐

recommend-type

Unexpected token c in JSON at position 0 报错信息及解决

在编程过程中,我们可能会遇到各种错误,其中"Unexpected token c in JSON at position 0"是一个常见的JavaScript解析错误,通常发生在尝试使用`JSON.parse()`函数解析一个预期为JSON格式的字符串时,但该字符串实际...
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

帮我用PHP写一个登录界面

当然可以,创建一个简单的PHP登录页面的基本步骤如下: ```php <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8"> <title>登录页面</title> </head> <body> <h2>用户登录</h2> <form method="post" action="login.php"> <label for="username">用户名:</label><br> <input type="text" id="username" name="us
recommend-type

校园导游系统:无向图实现最短路径探索

"校园导游系统是一个简单的程序设计实习项目,旨在用无向图表示校园的景点平面图,提供景点介绍和最短路径计算功能。该项目适用于学习数据结构和图算法,通过Floyd算法求解最短路径,并进行功能测试。" 这篇摘要提及的知识点包括: 1. **无向图**:在本系统中,无向图用于表示校园景点之间的关系,每个顶点代表一个景点,边表示景点之间的连接。无向图的特点是图中的边没有方向,任意两个顶点间可以互相到达。 2. **数据结构**:系统可能使用邻接矩阵来存储图数据,如`cost[n][n]`和`shortest[n][n]`分别表示边的权重和两点间的最短距离。`path[n][n]`则用于记录最短路径中经过的景点。 3. **景点介绍**:`introduce()`函数用于提供景点的相关信息,包括编号、名称和简介,这可能涉及到字符串处理和文件读取。 4. **最短路径算法**:通过`shortestdistance()`函数实现,可能是Dijkstra算法或Floyd-Warshall算法。这里特别提到了`floyed()`函数,这通常是Floyd算法的实现,用于计算所有顶点对之间的最短路径。 5. **Floyd-Warshall算法**:这是一种解决所有顶点对最短路径的动态规划算法。它通过迭代逐步更新每对顶点之间的最短路径,直到找到最终答案。 6. **函数说明**:`display(int i, int j)`用于输出从顶点i到顶点j的最短路径。这个函数可能需要解析`path[n][n]`数组,并将路径以用户可读的形式展示出来。 7. **测试用例**:系统进行了功能测试,包括景点介绍功能和最短路径计算功能的测试,以验证程序的正确性。测试用例包括输入和预期的输出,帮助识别程序的潜在问题。 8. **源代码**:源代码中包含了C语言的基本结构,如`#include`预处理器指令,`#define`定义常量,以及函数声明和定义。值得注意的是,`main()`函数是程序的入口点,而其他如`introduce()`, `shortestdistance()`, `floyed()`, 和 `display(int i, int j)` 是实现特定功能的子程序。 9. **全局变量**:`cost[n][n]`, `shortest[n][n]` 和 `path[n][n]`是全局变量,它们在整个程序范围内都可见,方便不同函数共享数据。 10. **C语言库**:`<stdio.h>`用于基本输入输出,`<process.h>`在这里可能用于进程控制,但请注意,在标准C库中并没有这个头文件,这可能是特定平台或编译器的扩展。 这个简单的校园导游系统是一个很好的教学案例,它涵盖了图论、数据结构、算法和软件测试等多个核心的计算机科学概念。对于学习者来说,通过实际操作这样的项目,可以加深对这些知识的理解和应用能力。