np.fft.fftshift是什么意思
时间: 2023-05-28 08:07:38 浏览: 249
np.fft.fftshift是NumPy中的一个函数,用于将傅里叶变换的频域数据进行移动操作。具体来说,它将傅里叶变换的结果进行中心化,即将频率轴从0 Hz开始变为以0 Hz为中心。这个操作通常在频域滤波中使用,以便在进行滤波之前将低频信号移动到频谱的中心。
相关问题
def fft2c(img): return np.fft.fftshift(np.fft.fft2(np.fft.ifftshift(img)))
这段代码实现了二维傅里叶变换(FFT)。
首先,输入的图像通过 `np.fft.ifftshift` 被移到了频域的中心,这是为了避免频谱的低频部分位于图像边缘。然后,使用 `np.fft.fft2` 进行二维 FFT 计算,得到的是频域的复数值表示。最后,通过 `np.fft.fftshift` 将频域的原点移回到左上角。
这个函数的返回值是经过变换后的频域图像。
f = np.fft.fft2(img) fshift = np.fft.fftshift(f)什么意思
这两行代码是进行二维傅里叶变换的核心代码,下面我来简单解释一下。
在图像处理中,傅里叶变换被广泛应用于频域滤波、图像增强、图像压缩等方面。傅里叶变换可以将一个时域信号(如图像)转换为其频域表示,用于分析其频率成分。具体来说,对于一个二维图像 $f(x,y)$,其傅里叶变换为 $F(u,v)$,公式如下:
$$F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(\frac{ux}{M}+\frac{vy}{N})}$$
其中,$M$ 和 $N$ 分别是图像的宽和高,$u$ 和 $v$ 分别是频率域的横、纵坐标。
具体到代码实现中,`np.fft.fft2()` 函数可以对二维图像进行傅里叶变换,其返回值是一个复数数组,表示图像的频域表示。而 `np.fft.fftshift()` 函数则是将频域中的直流分量移到频谱的中心,以便于后续的滤波操作。这两个函数的作用可以用下面的代码来展示:
```python
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取图像
img = cv2.imread('image.jpg',0)
# 进行傅里叶变换
f = np.fft.fft2(img)
# 频域中直流分量的位置在左上角,移动到中心位置
fshift = np.fft.fftshift(f)
# 显示结果
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(np.log(1+np.abs(fshift)), cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
```
运行上述代码,可以得到如下的结果:
![image](https://img-blog.csdn.net/20180419180038797)
左图是原始图像,右图是对应的频谱图,可以看到频谱中心是亮的,表示该图像中低频分量比较多,即图像中存在较多的低频信息。
阅读全文