import json import base64 from PIL import Image import io import cv2 from ultralytics import YOLO import supervision as sv def init_context(context): context.logger.info("Init context... 0%") model_path = "yolov8m-seg.pt" # YOLOV8模型放在nuclio目录下构建 model = YOLO(model_path) # Read the DL model context.user_data.model = model context.logger.info("Init context...100%") def handler(context, event): context.logger.info("Run yolo-v8-seg model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] masks = detections.xy conf = detections.confidence class_ids = detections.class_id results = [] if masks.shape[0] > 0: for label, score, mask in zip(class_ids, conf, masks): # 将mask转换为轮廓 contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: points = [] for point in contour: x = point[0][0] y = point[0][1] points.append([x, y]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": points, "type": "polygon", }) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)还缺哪些包和库
时间: 2024-02-14 12:29:51 浏览: 154
python PIL/cv2/base64相互转换实例
根据你提供的代码,缺少以下库和包:
1. `numpy`:用于处理数组和矩阵操作。你可以使用`pip install numpy`安装它。
2. `ultralytics`:用于YOLO模型的推理和结果处理。你可以使用`pip install ultralytics`安装它。
确保在你的环境中安装了这些库,并在代码中进行导入:
```python
import numpy as np
from ultralytics import YOLO
```
请注意,这只是你代码中缺少的一些库和包,你可能还需要根据你的需求进行进一步的导入。如果还有其他缺失的库或包,请提供相关信息。
阅读全文