windows = x.permute(0, 1, 3, 2, 4, 5).contigous().view(-1, window_size, window_size, C)

时间: 2023-08-21 17:04:18 浏览: 290
这段代码是 PyTorch 中的张量操作,它将一个 6 维的张量 x 进行了多个操作,具体解释如下: 1. `permute(0, 1, 3, 2, 4, 5)`:将 x 张量的维度进行重排列,将原来的 6 维张量的维度从左到右依次编号为 0, 1, 2, 3, 4, 5,而该操作将第 3 维和第 4 维进行了交换,即将第 4 维的数据移到了第 3 维。 2. `contiguous()`:将张量转换为连续内存的形式,这一步是因为在进行 view 操作之前,需要保证张量是连续的,否则会报错。 3. `view(-1, window_size, window_size, C)`:将张量 x 重塑为一个 4 维张量,第一维的大小是自动计算得出的,具体计算方法为将 x 张量的后三维展平,然后重排为一个 4 维张量,其中第 2、3、4 维依次为 window_size、window_size 和 C。 总体来说,该操作将一个大小为 (N, H, W, D, C1, C2) 的张量 x 转换为一个大小为 (N*H*W*D, window_size, window_size, C2) 的 4 维张量,其中 window_size 和 C2 的值由用户传入。
相关问题

def forward(self, x): xyz = x.permute(0, 2, 1) batch_size, _, _ = x.size() # B, D, N x = F.relu(self.bn1(self.conv1(x))) # B, D, N x = F.relu(self.bn2(self.conv2(x))) x = x.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=512, radius=0.15, nsample=32, xyz=xyz, points=x) feature_0 = self.gather_local_0(new_feature) feature = feature_0.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=256, radius=0.2, nsample=32, xyz=new_xyz, points=feature) feature_1 = self.gather_local_1(new_feature) x = self.pt_last(feature_1) x = torch.cat([x, feature_1], dim=1) x = self.conv_fuse(x) x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1) x = F.leaky_relu(self.bn6(self.linear1(x)), negative_slope=0.2) x = self.dp1(x) x = F.leaky_relu(self.bn7(self.linear2(x)), negative_slope=0.2) x = self.dp2(x) x = self.linear3(x) return x

这段代码是一个PyTorch的神经网络模型的前向传播函数,用于对输入x做推理得到输出结果。该模型为PointNet++,用于处理点云数据。该函数的输入为点云数据x,输出为该点云数据的特征向量表示。具体实现过程中,该模型对点云数据进行了一系列处理,包括对点云数据进行卷积、池化等操作,最终得到点云数据的特征向量表示。

x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous()

这段代码是用于实现卷积神经网络中的批量归一化操作。首先,将输入张量x的维度进行调整,使得通道维度(C)在最后一个维度上。然后,对调整后的张量x进行乘法运算,乘以批量归一化层的权重(Weight_BN)。最后,再将张量x的维度调整回来,使得通道维度(C)重新回到第二个维度上。这三个步骤的目的是为了对输入张量x进行批量归一化,从而提升卷积神经网络的性能。
阅读全文

相关推荐

class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1)) self.pool_w1 = nn.MaxPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) x_h1 = self.pool_h1(x) x_w1 = self.pool_w1(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w, x_h1, x_w1], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w, _, _ = torch.split(y, [h, w, h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) x_w1 = x_w1.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() a_w1 = self.conv_w(x_w1).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_w1) return self.conv(out)在里面修改一下,换成这个y = torch.cat([x_h+x_h1, x_w+x_w1], dim=2)

def init(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().init() head_dim = dim // num_heads self.num_heads = num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = qk_scale or head_dim**-0.5 self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size**4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, x): B, H, W, C = x.shape v = self.v(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads, self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape( B, h * w, self.num_heads, self.kernel_size * self.kernel_size, self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk attn = attn * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(0, 1, 4, 3, 2).reshape( B, C * self.kernel_size * self.kernel_size, h * w) x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) x = self.proj(x.permute(0, 2, 3, 1)) x = self.proj_drop(x) return x

import torch import torch.nn as nn class LeNetConvLSTM(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(LeNetConvLSTM, self).__init__() # LeNet网络部分 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(in_features=16*5*5, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=84) # ConvLSTM部分 self.lstm = nn.LSTMCell(input_size, hidden_size) self.hidden_size = hidden_size self.kernel_size = kernel_size self.padding = kernel_size // 2 def forward(self, x): # LeNet网络部分 x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*5*5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) # 将输出转换为ConvLSTM所需的格式 batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height*width) x = x.permute(0, 2, 1) # ConvLSTM部分 hx = torch.zeros(batch_size, self.hidden_size).to(x.device) cx = torch.zeros(batch_size, self.hidden_size).to(x.device) for i in range(height*width): hx, cx = self.lstm(x[:, i, :], (hx, cx)) hx = hx.view(batch_size, self.hidden_size, 1, 1) cx = cx.view(batch_size, self.hidden_size, 1, 1) if i == 0: output = hx else: output = torch.cat((output, hx), dim=1) # 将输出转换为正常的格式 output = output.permute(0, 2, 3, 1) output = output.view(batch_size, height, width, self.hidden_size) return output

def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out

class Mlp(nn.Module): """ Multilayer perceptron.""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, D, H, W, C) window_size (tuple[int]): window size Returns: windows: (B*num_windows, window_size*window_size, C) """ B, D, H, W, C = x.shape x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) return windows def window_reverse(windows, window_size, B, D, H, W): """ Args: windows: (B*num_windows, window_size, window_size, C) window_size (tuple[int]): Window size H (int): Height of image W (int): Width of image Returns: x: (B, D, H, W, C) """ x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) return x def get_window_size(x_size, window_size, shift_size=None): use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size)

class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h) return self.conv(out) 在 self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None))这里继续添加 self.pool_w1 = nn.MaxPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1))

大家在看

recommend-type

计算机图形学-小型图形绘制程序

计算机图形学-小型图形绘制程序
recommend-type

安装验证-浅谈mysql和mariadb区别

3.5 安装验证 客户机上能够启动软件就说明安装成功。 MotorSolve 成功画面 3.6 帮助 MotorSolve 上端的界面中的帮助按钮,点击可以查看详细的说明
recommend-type

基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

国密SM4加解密SM2签名验签for delphi等语言.rar

基于C#编写的COM组件DLL,可实现SM2签名验签,SM4加解密,100%适用于黑龙江省国家医保接口中进行应用。 1、调用DLL名称:JQSM2SM4.dll 加解密类名:JQSM2SM4.SM2SM4Util CLSID=5B38DCB3-038C-4992-9FA3-1D697474FC70 2、GetSM2SM4函数说明 函数原型public string GetSM2SM4(string smType, string sM2Prikey, string sM4Key, string sInput) 1)参数一smType:填写固定字符串,识别功能,分别实现SM2签名、SM4解密、SM4加密。SM2签名入参填写“SM2Sign”、SM4解密入参填写“SM4DecryptECB”、SM4加密入参填写“SM4EncryptECB”. 2)参数二sM2Prikey:SM2私钥 3)参数三sM4Key:SM4密钥 4)参数四sInput:当smType=SM2Sign,则sInput入参填写SM4加密串;当smType=SM4DecryptECB,则sInput入参填写待解密SM4密文串;当smType=SM4EncryptECB,则sInput入参填写待加密的明文串; 5)函数返回值:当smType=SM2Sign,则返回SM2签名信息;当smType=SM4DecryptECB,则返回SM4解密信息;当smType=SM4EncryptECB,则返回SM4加密信息;异常时,则返回“加解密异常:详细错误说明” 3、购买下载后,可加QQ65635204、微信feisng,免费提供技术支持。 4、注意事项: 1)基于.NET框架4.0编写,常规win7、win10一般系统都自带无需安装,XP系统则需安装;安装包详见压缩包dotNetFx40_Full_x86_x64.exe 2)C#编写的DLL,需要注册,解压后放入所需位置,使用管理员权限运行“JQSM2SM4注册COM.bat”即可注册成功,然后即可提供给第三方软件进行使用,如delphi等。
recommend-type

基于Android Studio开发的安卓的通讯录管理app

功能包含:新增联系人、编辑联系人、删除联系人、拨打电话、发送短信等相关操作。 资源包含源码:1、apk安装包 2、演示视频 3、 基本安装环境、4、运行文档 5、以及源代码

最新推荐

recommend-type

基于OpenCV的人脸识别小程序.zip

【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

精选毕设项目-宅男社区.zip

精选毕设项目-宅男社区
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->