agvs[i].agv_charge(); agvs[i].setState(0);// ,將agv_charge(); 反放入一個新綫程,不影響主綫程的運行

时间: 2024-02-26 14:56:51 浏览: 21
在C++11中,您可以使用lambda表达式来创建一个新线程并在其中调用`agv_charge()`方法。以下是一个示例代码: ```c++ #include <thread> // 创建新线程 std::thread charge_thread([&](){ agvs[i].agv_charge(); }); // 在新线程中执行agv_charge()方法 charge_thread.join(); // 继续执行主线程 agvs[i].setState(0); ``` 在上面的代码中,我们使用lambda表达式来创建了一个新的线程`charge_thread`。在lambda表达式中,我们调用了`agv_charge()`方法,同时使用`[&]`来捕获`agvs`和`i`。这意味着我们可以在lambda表达式中访问`agvs`和`i`,而无需显式地传递它们作为参数。 接下来,我们使用`join()`方法等待新线程执行完`agv_charge()`方法后再继续执行主线程。最后,我们将`agvs[i]`的状态设置为0,以便继续执行主线程的其他操作。
相关问题

// 创建新线程并执行agv_charge()方法 std::thread charge_thread(&{ agvs[i].agv_charge(); }); // 分离新线程,使其在后台运行 charge_thread.detach(); // 继续执行主线程 if (agvs[i].battery_ == 100) { agvs[i].setState(0); // 设置充电站为可用状态 for (int j = 0; j < charges.size(); j++) { if (agvs[i].end_x_ == charges[j].charge_x && agvs[i].end_y_ == charges[j].charge_y) { charges[j].setavailable(true); break; } } // 更新任务分配 agvs[i].setAvailable(true); tasks[completed_task_index].completed = 2; scheduler.assign_task_to_agv(tasks, agvs); },爲什麽充滿電以後,不會繼續後續函數,怎麽修改

在这段代码中,当AGV的电池电量达到100%时,会将AGV的状态设置为0(空闲状态),将充电站设置为可用状态,并更新任务分配。如果希望在电池充满后继续执行后续函数,可以将这段代码包装在一个while循环中,判断AGV的电池电量是否已经充满,如果没有充满则等待一段时间,直到充满为止。修改后的代码如下: ```c++ while (agvs[i].battery_ < 100) { std::this_thread::sleep_for(std::chrono::milliseconds(100)); } agvs[i].setState(0); // 设置充电站为可用状态 for (int j = 0; j < charges.size(); j++) { if (agvs[i].end_x_ == charges[j].charge_x && agvs[i].end_y_ == charges[j].charge_y) { charges[j].setavailable(true); break; } } // 更新任务分配 agvs[i].setAvailable(true); tasks[completed_task_index].completed = 2; scheduler.assign_task_to_agv(tasks, agvs); ``` 这样就可以保证在电池充满后继续执行后续函数了。

// 创建新线程并执行agv_charge()方法 std::thread charge_thread([&](){ agvs[i].agv_charge(); }); // 分离新线程,使其在后台运行 charge_thread.detach(); //继续执行主线程 if (agvs[i].battery_ == 100) { agvs[i].setState(0); // 设置充电站为可用状态 for (int j = 0; j < charges.size(); j++) { if (agvs[i].end_x_ == charges[j].charge_x && agvs[i].end_y_ == charges[j].charge_y) { charges[j].setavailable(true); break; } } // 更新任务分配 agvs[i].setAvailable(true); tasks[completed_task_index].completed = 2; scheduler.assign_task_to_agv(tasks, agvs); },設置黨綫程結束的時候,再去運行下面的函數

这段代码的作用是创建一个新线程来执行agv_charge()方法,并将其分离,使其在后台运行。如果AGV的电池充满了,就将其状态设置为0,并将充电站设置为可用状态。然后更新任务分配,并将任务标记为完成。最后,调度器会将任务分配给其他AGV。这段代码的结构是先创建新线程并执行agv_charge()方法,然后在新线程结束后再执行下面的函数。

相关推荐

// 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true);//agv設置為可用狀態 std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } },添加代碼:添加首要條件,agv對應的task的completed是1則執行,反之跳出

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> agv_paths(agvs.size()); // 将变量名改为 agv_paths //根據agv獲取taskid,初始化 int completed_task_index = -1; // 如果任務都完成了,停止定時器 bool all_tasks_completed = true; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].completed != 2) { all_tasks_completed = false; break; } } if (all_tasks_completed) { timer->stop(); // 停止定时器 return; } // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); agv_paths[i] = path; // 将路径保存到 agv_paths 中 } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); agv_paths[i] = path; // 将路径保存到 agv_paths 中 } } } // 将 agv_paths 赋值给类成员变量 paths paths = std::vector<std::vector<Node>>(agv_paths.begin(), agv_paths.end()); },paths = std::vector<std::vector<Node>>(agv_paths.begin(), agv_paths.end()); 報錯:沒有可接受的轉換

void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std :: cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; tasks[agvs[i].get_task_id() - 1].completed = 2; // 更新任务状态为已完成 task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path; } },爲什麽沒有使正確的task的completed變成2

private: Ui::MainWindow ui; std::vector<std::vector<Node>> paths;,void MainWindow::moveAgvs() { Astar astar; std::vector<std::vector<Node*>> paths(agvs.size()); //根據agv獲取taskid,初始化 int completed_task_index = -1; // 如果任務都完成了,停止定時器 bool all_tasks_completed = true; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].completed != 2) { all_tasks_completed = false; break; } } if (all_tasks_completed) { timer->stop(); // 停止定时器 return; } // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } },是否創建了兩個path怎麽修改

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。