while (agvs[i].battery_ < 100) { agvs[i].setState(2);// 设置AGV状态为充电 std::this_thread::sleep_for(std::chrono::milliseconds(100)); if (agvs[i].battery_ + 1 <= 100) { agvs[i].battery_ += 1; // 假设每秒充电10% agvs[i].setrun(true); } else { agvs[i].battery_ = 100; // 电量达到100后,不再进行充电操作 } },改爲Qtimer

时间: 2024-03-06 22:50:17 浏览: 21
将上述代码改为QTimer实现可以考虑如下方式: 1. 首先定义一个QTimer对象: ```c++ QTimer *timer = new QTimer(this); ``` 2. 在需要执行循环充电的地方,启动定时器: ```c++ agvs[i].setState(2); // 设置AGV状态为充电 timer->start(100); // 启动定时器,每隔100ms执行一次 ``` 3. 在每次定时器超时时执行相关操作: ```c++ connect(timer, &QTimer::timeout, this, [=]() { if (agvs[i].battery_ + 1 <= 100) { agvs[i].battery_ += 1; // 假设每秒充电10% agvs[i].setrun(true); } else { agvs[i].battery_ = 100; // 电量达到100后,不再进行充电操作 timer->stop(); // 停止定时器 agvs[i].setState(1); // 设置AGV状态为待命 } }); ``` 4. 在需要停止定时器的地方,调用stop()函数停止定时器: ```c++ timer->stop(); ``` 这样实现的好处是可以避免阻塞主线程,同时也可以更加精确地控制循环充电的时间间隔。
相关问题

while (agvs[i].battery_ < 100) { agvs[i].setState(2);// 设置AGV状态为充电 std::this_thread::sleep_for(std::chrono::milliseconds(100)); if (agvs[i].battery_ + 1 <= 100) { agvs[i].battery_ += 1; // 假设每秒充电10% } else { agvs[i].battery_ = 100; // 电量达到100后,不再进行充电操作 } },實現agv在充電時,等待的效果

可以使用C++11中的std::condition_variable和std::mutex来实现AGV在充电时等待的效果。具体的实现步骤如下: 1. 定义一个std::condition_variable和std::mutex对象: ``` std::condition_variable cv; std::mutex mtx; ``` 2. 在while循环中将std::unique_lock<std::mutex>对象和计数器绑定,并使用std::condition_variable来等待充电完成的信号: ``` bool charging = true; while (agvs[i].battery_ < 100) { agvs[i].setState(2); // 设置AGV状态为充电 std::unique_lock<std::mutex> lck(mtx); cv.wait(lck, [&]{ return !charging; }); charging = true; } ``` 3. 在另一个线程中定期更新计数器,并发送充电完成的信号: ``` std::thread([&]{ while (agvs[i].battery_ < 100) { std::this_thread::sleep_for(std::chrono::milliseconds(100)); if (agvs[i].battery_ + 1 <= 100) { agvs[i].battery_ += 1; // 假设每秒充电10% } else { agvs[i].battery_ = 100; // 电量达到100后,不再进行充电操作 std::unique_lock<std::mutex> lck(mtx); charging = false; cv.notify_one(); break; } } }).detach(); ``` 这样就实现了使用std::condition_variable来等待AGV充电完成的效果。需要注意的是,当充电完成后需要发送信号来通知等待的线程。同时需要使用std::mutex来保证计数器的值在线程间传递的线程安全性。

// 创建新线程并执行agv_charge()方法 std::thread charge_thread(&{ agvs[i].agv_charge(); }); // 分离新线程,使其在后台运行 charge_thread.detach(); // 继续执行主线程 if (agvs[i].battery_ == 100) { agvs[i].setState(0); // 设置充电站为可用状态 for (int j = 0; j < charges.size(); j++) { if (agvs[i].end_x_ == charges[j].charge_x && agvs[i].end_y_ == charges[j].charge_y) { charges[j].setavailable(true); break; } } // 更新任务分配 agvs[i].setAvailable(true); tasks[completed_task_index].completed = 2; scheduler.assign_task_to_agv(tasks, agvs); },爲什麽充滿電以後,不會繼續後續函數,怎麽修改

在这段代码中,当AGV的电池电量达到100%时,会将AGV的状态设置为0(空闲状态),将充电站设置为可用状态,并更新任务分配。如果希望在电池充满后继续执行后续函数,可以将这段代码包装在一个while循环中,判断AGV的电池电量是否已经充满,如果没有充满则等待一段时间,直到充满为止。修改后的代码如下: ```c++ while (agvs[i].battery_ < 100) { std::this_thread::sleep_for(std::chrono::milliseconds(100)); } agvs[i].setState(0); // 设置充电站为可用状态 for (int j = 0; j < charges.size(); j++) { if (agvs[i].end_x_ == charges[j].charge_x && agvs[i].end_y_ == charges[j].charge_y) { charges[j].setavailable(true); break; } } // 更新任务分配 agvs[i].setAvailable(true); tasks[completed_task_index].completed = 2; scheduler.assign_task_to_agv(tasks, agvs); ``` 这样就可以保证在电池充满后继续执行后续函数了。

相关推荐

void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return task_1.completed < task_2.completed; // 未完成的任务排在已完成的任务前面 } else { return task_1.priority < task_2.priority; // 同一完成状态下,按照优先级排序 } }); for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 1) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->set_task_id(task.id); closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 std::cout << "agv_id" << closest_agv->getid() << "————" << "task_id"<<task.id << "task_completed"<< task.completed << endl; } else { std::cout << "task_id-" << task.id << "No available AGV!" << "task_completed"<< task.completed <<endl; } } },修改代碼為在最後輸出所有task的agvid,taskid和task的completed

void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return !task_1.completed; } else { return task_1.priority < task_2.priority; } }); for (const auto& task : tasks) { std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (!task.completed) { AGV* closest_agv = nullptr; // 初始化为 nullptr while (closest_agv == nullptr) { // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); } } // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); task.completed = true; std::cout << closest_agv->getid() << "," << task.id << endl; } } },一運行,就卡死,怎麽解決

// 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true);//agv設置為可用狀態 std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } },添加代碼:添加首要條件,agv對應的task的completed是1則執行,反之跳出

// 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } },修改爲,首先判斷task的completed為1

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。