for (i = 0U; i < TRANSFER_SIZE; i++) { /* Print 16 numbers in a line */ if ((i & 0x0FU) == 0U) { PRINTF("\r\n"); } PRINTF(" %02X", masterTxData[i]); }

时间: 2024-02-10 19:33:04 浏览: 27
这段代码的作用是将masterTxData数组中的数据以十六进制格式打印出来,并且每行打印16个数字。可以看到,使用了PRINTF函数来输出数据,其中“\r\n”表示回车和换行,即换到新的一行。如果i的低4位为0,即i & 0x0FU == 0U,则表示已经打印了16个数字,需要换到新的一行。否则,继续在当前行打印数字。该代码可能是为了调试或者验证数据的正确性。
相关问题

/* Set up the transfer data */ for (i = 0U; i < TRANSFER_SIZE; i++) { masterTxData[i] = (i + loopCount) % 256U; masterRxData[i] = 0U; }

这段代码看起来像是在设置一些传输数据的初始值。具体来说,循环将从0到TRANSFER_SIZE的每个索引值加上循环计数loopCount,然后对256取模,最后将结果存储在masterTxData数组中。同时,将masterRxData数组的每个元素初始化为0。这个过程可能是为了准备将这些数据传输给其他设备,或者从其他设备接收数据时使用。

MD_STATUS SPI_MasterSend(uint8_t *const tx_buf, uint16_t tx_num) { MD_STATUS status = MD_OK; *tx_buf = (*tx_buf << 1) | 0x80; if (tx_num < 1U) { status = MD_ERROR; } else { SPI->SPIM |= _0040_SPI_RECEPTION_TRANSMISSION | _0008_SPI_BUFFER_EMPTY; /* transmission mode */ #ifdef SPI_WITH_DMA /* write transfer data with DMA */ DMAVEC->VEC[DMA_VECTOR_SPI] = CTRL_DATA_SPI; DMAVEC->CTRL[CTRL_DATA_SPI].DMACR = (0 << CTRL_DMACR_SZ_Pos) | (0 << CTRL_DMACR_CHNE_Pos) | (0 << CTRL_DMACR_DAMOD_Pos) | (1 << CTRL_DMACR_SAMOD_Pos) | (0 << CTRL_DMACR_MODE_Pos); DMAVEC->CTRL[CTRL_DATA_SPI].DMBLS = 1; DMAVEC->CTRL[CTRL_DATA_SPI].DMACT = tx_num - 1; DMAVEC->CTRL[CTRL_DATA_SPI].DMRLD = tx_num - 1; DMAVEC->CTRL[CTRL_DATA_SPI].DMSAR = (uint32_t)(tx_buf + 1); DMAVEC->CTRL[CTRL_DATA_SPI].DMDAR = (uint32_t)&SPI->SDRO; /* init DMA registers */ CGC->PER1 |= CGC_PER1_DMAEN_Msk; DMA->DMABAR = DMAVEC_BASE; DMA->DMAEN1 |= (1 << DMA_VECTOR_SPI % 8); #endif #ifdef SPI_WITH_DMA g_spi_tx_count = 1; /* send data count */ gp_spi_tx_address = tx_buf; /* send buffer pointer */ #else printf("3333333333333\n"); g_spi_tx_count = tx_num; /* send data count */ gp_spi_tx_address = tx_buf; /* send buffer pointer */ printf("gp_spi_tx_address==%p\n",gp_spi_tx_address); printf("4444444444444444\n"); #endif SPI_Start(); printf("........."); SPI->SDRO = *gp_spi_tx_address; /* started by writing data to SDRO */ printf("77777777777777777\n"); gp_spi_tx_address++; g_spi_tx_count--; } return (status); }解释一下这个代码

这段代码是一个SPI主机发送数据的函数。函数接收两个参数,一个是指向要发送数据的缓冲区的指针`tx_buf`,另一个是要发送的数据的数量`tx_num`。 首先,代码将缓冲区中的第一个数据做了一些处理,将其左移1位并将最高位置为1,然后赋值给原来的位置。这个操作可能是为了设置SPI传输的某些特殊标志位。 接下来,代码检查`tx_num`是否小于1,如果是,则将`status`设置为`MD_ERROR`,表示发送错误。否则,代码将设置SPI控制寄存器的相关位,使其进入传输模式。 接着,代码判断是否使用DMA进行数据传输。如果使用DMA,则进行一系列DMA相关的设置,并启动DMA传输。如果不使用DMA,则设置`g_spi_tx_count`为要发送的数据量,设置`gp_spi_tx_address`为要发送数据的指针。 然后,代码调用`SPI_Start()`函数开始SPI传输。 最后,代码将第一个要发送的数据写入SPI数据寄存器,并递增`gp_spi_tx_address`指针和递减`g_spi_tx_count`计数器,以便发送下一个数据。 最后,函数返回状态值`status`。

相关推荐

分析代码:#include <sys/types.h> #include <sys/fcntl.h> #include <sys/socket.h> #include <netinet/in.h> #include <netdb.h> #define SERVER_PORT 12345 /* arbitrary, but client and server must agree */ #define BUF_SIZE 4096 /* block transfer size */ #define QUEUE_SIZE 10 int main(int argc, char *argv[]) { int s, b, l, fd, sa, bytes, on = 1; char buf[BUF_SIZE]; /* buffer for outgoing file */ struct sockaddr_in channel; /* hold's IP address */ /* Build address structure to bind to socket. */ memset(&channel, 0, sizeof(channel)); /* zero channel */ channel.sin_family = AF_INET; channel.sin_addr.s_addr = htonl(INADDR_ANY); channel.sin_port = htons(SERVER_PORT); /* Passive open. Wait for connection. */ s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); /* create socket */ if (s < 0) fatal("socket failed"); setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on)); b = bind(s, (struct sockaddr *) &channel, sizeof(channel)); if (b < 0) fatal("bind failed"); l = listen(s, QUEUE_SIZE); /* specify queue size */ if (l < 0) fatal("listen failed"); /* Socket is now set up and bound. Wait for connection and process it. */ while (1) { sa = accept(s, 0, 0); /* block for connection request */ if (sa < 0) fatal("accept failed"); read(sa, buf, BUF_SIZE); /* read file name from socket */ /* Get and return the file. */ fd = open(buf, O_RDONLY); /* open the file to be sent back */ if (fd < 0) fatal("open failed"); while (1) { bytes = read(fd, buf, BUF_SIZE); /* read from file */ if (bytes <= 0) break; /* check for end of file */ write(sa, buf, bytes); /* write bytes to socket */ } close(fd); /* close file */ close(sa); /* close connection */ } } fatal(char *string) { printf("%s", string); exit(1); }

unsigned char crcMediumCheck16 (unsigned char byte1, unsigned char byte2, unsigned char byte3) { unsigned char synd; synd = (byte1 ^ 0xEC); if (synd & 0x80) synd ^= 0xB7; synd = propagate7[synd] ^ byte2; if (synd & 0x80) synd ^= 0xB7; synd = propagate7[synd] ^ byte3; if (synd & 0x80) synd ^= 0xB7; return synd == 0; } uint16_t max14912_readback; /* cmd2 + data2 + crc2 + cmd1 + data1 + crc1 */ uint16_t Maxim14912_Data_Write(uint16_t data, uint16_t *pfault_data) { uint8_t dat1, dat2; //dat1 is first MAX14912(bit8-15),dat2 is second MAX14912(bit0-7) uint8_t CMD_Data[6]={0x80,0,0,0x80,0,0}; uint8_t data_rx[6]; uint8_t crc_check1, crc_check2; uint8_t ret = 0; uint16_t fault_data; dat1 = (uint8_t)((data >> 8) & 0xff); dat2 = (uint8_t)(data & 0xff); /* data build */ CMD_Data[4] = dat1; CMD_Data[1] = dat2; /* crc build */ CMD_Data[2] = crcMediumEncode16(CMD_Data[0], CMD_Data[1]); CMD_Data[5] = crcMediumEncode16(CMD_Data[3], CMD_Data[4]); /* spi send&recev */ Dio_Spi_Cs_Enable(DO_CS_SELECT); Dio_Spi_Transfer_Data(CMD_Data, data_rx, 6); Dio_Spi_Cs_Release(); /* crc check */ crc_check1 = crcMediumCheck16(data_rx[0], data_rx[1], data_rx[2]); crc_check2 = crcMediumCheck16(data_rx[3], data_rx[4], data_rx[5]); if((crc_check1 == 0) && (crc_check2 == 0)) { fault_data = ((uint16_t)data_rx[0]) | ((uint16_t)data_rx[3] << 8); *pfault_data = fault_data; max14912_readback = ((uint16_t)data_rx[1]) | ((uint16_t)data_rx[4] << 8); /* 2021.09.10 */ } else //crc错误 { max14912_readback = 0; /* 2021.09.10 */ ret = 1; } return ret; }

最新推荐

recommend-type

译文Transfer Capsule Network for Aspect Level Sentiment Classification.docx

「迁移胶囊网络在方面级情感分类中的应用」 自从深度学习技术的发展以来,自然语言处理领域中的情感分析任务逐渐受到关注。其中,方面级情感分类(ASC)是情感分析中一个细粒度的子任务,旨在确定一个句子对一个...
recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到