如何理解节点s后插入p节点

时间: 2024-04-27 08:20:16 浏览: 5
在数据结构中,节点 s 后插入节点 p 意味着将节点 p 插入到节点 s 的后面,也就是将节点 p 放在节点 s 的下一个位置。具体来说,可以将节点 p 的指针指向节点 s 后面节点的位置,然后将节点 s 的指针指向节点 p 的位置,这样就完成了节点 s 后插入节点 p 的操作。这种操作常常在链表、树等数据结构中使用。
相关问题

用数据结构(C语言)写出在p结点前插入s结点的语句,并解释

在C语言中,我们可以使用指针来实现链表数据结构。在链表中,每个节点都有一个指向下一个节点的指针。要在链表中插入一个新的节点,我们需要做以下几个步骤: 1. 创建一个新的节点s,并为其分配内存空间。 2. 将新节点s的指针指向原节点p的下一个节点。 3. 将原节点p的指针指向新节点s。 因此,在p结点前插入s结点的语句可以写成: ``` struct Node* s = (struct Node*)malloc(sizeof(struct Node)); // 创建新节点s并分配内存空间 s->data = value; // 给新节点s赋值 s->next = p->next; // 将新节点s的指针指向原节点p的下一个节点 p->next = s; // 将原节点p的指针指向新节点s ``` 其中,`value`是要存储在新节点s中的值,`struct Node`是链表节点的数据类型。需要注意的是,在使用完新节点s后,要及时释放其占用的内存空间,以避免内存泄漏。

s=p->next;与p->next=s的区别

### 回答1: `s=p->next` 是将 p 指向的节点的下一个节点的指针赋值给 s,即将节点 s 指向 p 后面的节点。 而 `p->next=s` 是将指针 p 指向的节点的下一个节点的指针指向 s,即将节点 s 插入到 p 后面。 两者的操作对象不同,前者是将指针赋值给普通变量,后者是将指针指向另一个节点。 ### 回答2: s=p->next表示将指针p指向的节点的下一个节点的地址赋值给了指针s。 而p->next=s表示将指针s的值赋值给了指针p指向的节点的下一个节点的地址。 简而言之,s=p->next是将p指向的节点的下一个节点的地址赋值给了s,而p->next=s是将s的值赋值给了p指向的节点的下一个节点的地址。 以链表结构为例,假设链表结构为A->B->C,其中p指向节点A,s为一个指针。 若执行s=p->next,则s将指向B节点,表示将p指向的节点A的下一个节点的地址赋值给了s。 若执行p->next=s,则节点A的next指针将指向s所指向的节点,即B节点的地址,这样节点A就和节点B相连,链表变为A->B->B->C。 综上所述,s=p->next表示将指针p指向的节点的下一个节点的地址赋值给了指针s,而p->next=s表示将指针s的值赋值给了指针p指向的节点的下一个节点的地址。在链表结构中,两者的效果是不同的。 ### 回答3: s=p->next表示s指向了p的下一个节点,即s为p下一个节点的地址。 p->next=s表示p的下一个节点指向了s,即p指向了s。 两者的区别在于对指针p和其下一个节点的操作不同。前者是将p的下一个节点的地址赋值给了s,而后者是将s的地址赋值给了p的下一个节点。 这样对应的指针的指向关系也发生了改变。

相关推荐

优化这段代码的运行时间#include<stdio.h> #include<stdlib.h> typedef struct node* DNode; struct node { int data; DNode prior; //前面数据地址 DNode next; //后面数据地址 }; //创建双向链表 void CreatNode(DNode *head) { DNode s; //新节点指针 char e; (*head) = (DNode)malloc(sizeof(struct node));//头结点 (*head)->prior = (*head); //初始头结点的前驱和后驱都指向自己 (*head)->next = (*head); printf("输入数据\n"); scanf("%c", &e); while (e!='\n') { s = (DNode)malloc(sizeof(struct node)); //新节点分配空间 s->data = e; s->prior = (*head); //新节点的prior连前一个结点 s->next = (*head)->next; //新节点的next连后边结点 (*head)->next->prior = s; //后一个结点的prior连新结点 (*head)->next = s; //新节点前面的next连新结点 scanf("%c", &e); } } //向后遍历输出 void PrintList1(DNode L) { DNode p; p = L; p = p->next; while (p != L) { printf("%c", p->data); p = p->next; } printf("\n"); } //向前遍历输出 void PrintList2(DNode L) { DNode p; p = L->prior; while (p != L) { printf("%c", p->data); p = p->prior; } printf("\n"); } //查找第i处数据的地址 DNode FindPosition(DNode L,int i) { int j = 0; DNode p = L; while (p->next != L&&j < i) { p = p->next; j++; } return p; } //插入 void InsertList(DNode L) { DNode s,p; //s为新结点 p为新节点前一个结点 int i; char e; printf("在第几处插入:\n"); scanf("%d", &i); getchar(); printf("插入什么数据:\n"); scanf("%c", &e); p = FindPosition(L, i-1); //新节点前一个结点地址 s = (DNode)malloc(sizeof(struct node));//申请新节点空间 s->data = e; s->prior = p; //新节点的prior连上前一个结点 s->next = p->next; //新节点的next连上后一个结点 p->next->prior = s; //新节点后的结点的prior连上新结点 p->next = s; //新节点前的结点的next连上新结点 } //删除 void DeleteList(DNode L){ DNode s,p; //s为新结点 p为要删除的结点 int i; printf("删除第几处的数据:\n"); scanf("%d", &i); p = FindPosition(L, i); //要删除结点的地址 p->prior->next = p->next; //要删除的结点的前一个结点的next,连上要删结点后的结点 p->next->prior = p->prior;//要删除结点的后一个结点的prior,连上要删结点的前一个结点 free(p); } int main() { DNode list; CreatNode(&list); //PrintList1(list); PrintList2(list); InsertList(list); PrintList2(list); DeleteList(list); PrintList2(list); }

void MySort(StudentNode** s){ StudentNode* p = *s;StudentNode* temp; int lenth = 0; // 判断特殊情况 长度为1 if((p -> next == NULL)) { printf("长度为1,无需排序!\n"); return; } // 判断特殊情况 长度为2 if((p -> next -> next == NULL)) { if(p->ID < p->next->ID){ temp = p; // 保存头节点 *s = (*s)->next; // 头节点换为下一个节点 (*s)->next = temp; (*s)->next->next = NULL; } printf("排序完成! \n"); return; } // 获取长度 while(1) { lenth++; if(p->next == NULL){ // 退出 break; } p = p->next; } printf("长度为%d !\n", lenth); // 冒泡排序 StudentNode* head = *s; StudentNode* pre = *s; // 当前 StudentNode* cur = (*s)->next; // 当前 +1 StudentNode* next = (*s)->next->next; // 当前 + 2 StudentNode* end = NULL; for (int i = lenth; i >= 0; i--) { pre = head; cur = pre->next; next = cur->next; while(next != NULL) { if (cur->ID > next->ID) { cur->next = next->next; pre->next = next; next->next = cur; next = cur->next; pre = pre->next; } else { pre = pre->next; cur = cur->next; next = next->next; } } } // 头结点 排序 head = *s; cur = *s; // 当前 // cur到尾巴 while(cur->next != NULL){ // 大于上一个,小于下一个 if(head->ID > cur->ID && head->ID < cur->next->ID ){ // 头节点换为下一个节点 *s = (*s)->next; // 插入 head temp = cur->next; cur->next = head; head->next = temp; printf("头排序完成!\n"); printf("排序完成!\n"); return; } cur = cur->next; // 往下走 } // 单独比较尾巴 if(head->ID > cur->ID){ // 头节点换为下一个节点 *s = (*s)->next; cur->next = head; head->next = NULL; printf("头排序完成!\n"); } printf("排序完成!\n"); }是什么意思

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

mac上和window原生一样的历史剪切板工具有什么

好的,我明白了您的要求。关于您的问题,为使Mac与Windows的历史剪切板功能类似,可以使用第三方工具"CopyClip"、"Alfred"、"Clipboard Manager"等。这些工具可以记录您复制到剪切板的所有内容,而不仅仅是最后一次复制。同时,它们还可以进行搜索和过滤,以便您更快地找到需要的内容。希望这能回答您的问题。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩