model = LogisticRegression() model.fit(X_train,y_train)
时间: 2024-01-17 14:03:52 浏览: 63
这段代码定义了一个逻辑回归模型,并使用训练集X_train和y_train对模型进行了训练,训练的过程使用的是fit函数。fit函数的作用是让模型根据数据集进行学习,调整模型的参数,使得模型能够更好地拟合数据。在这个例子中,模型的输入是X_train,输出是y_train。训练完成后,模型就可以用来对测试集进行预测,评估模型的性能如何。
相关问题
model = LogisticRegression() model.fit(X_train, y_train)
这段代码使用Scikit-learn库中的LogisticRegression()函数来创建一个逻辑回归模型,并使用该模型拟合了训练数据集(X_train和y_train)。逻辑回归是一种分类算法,用于将输入特征映射到一个二元输出(0或1),通常用于二分类问题。在本代码中,我们使用LogisticRegression()函数创建了一个逻辑回归模型,并将其存储在model变量中。接着,使用fit()函数将训练数据集(X_train和y_train)作为参数输入,对模型进行训练。在训练过程中,模型将学习如何根据输入特征来预测输出标签。训练完成后,我们可以使用该模型对新的数据进行预测,并评估模型的性能。
import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示
抱歉,由于我是一个纯文本AI,无法进行画图展示。但是,你可以使用Python中的matplotlib库进行数据可视化。例如,你可以使用以下代码绘制特征重要性条形图:
import matplotlib.pyplot as plt
importance = mode.feature_importances_
features = list(X.columns)
plt.barh(features, importance)
plt.title('Feature Importance')
plt.xlabel('Importance')
plt.show()
这段代码可以在Sf函数中的print(importance)下方添加,并在运行时展示特征重要性条形图。
阅读全文