image = np.random.randn(1,3,32,448).astype(np.float32)
时间: 2023-12-03 20:02:23 浏览: 91
这段代码创建了一个形状为 (1,3,32,448) 的四维 NumPy 数组,其中:
- 第一个维度的大小为 1,表示这个数组只包含一个数据样本(batch size = 1)。
- 第二个维度的大小为 3,表示每个数据样本由三个通道组成,例如 RGB 彩色图像。
- 第三个维度的大小为 32,表示图像的高度为 32 像素。
- 第四个维度的大小为 448,表示图像的宽度为 448 像素。
这个数组中的元素都是随机数,数据类型为 32 位浮点数。这种形式的数组通常被用来作为一个数据批次输入到深度学习模型中进行训练或推断。
相关问题
File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/PIL/Image.py", line 2955, in fromarray raise TypeError("Cannot handle this data type: %s, %s" % typekey) from e TypeError: Cannot handle this data type: (1, 1, 47), <f8
这个错误是由 PIL 库中的 Image 类的 fromarray 方法抛出的。该方法用于从一个 numpy 数组中创建一个 PIL 图像对象。这个错误的原因是 PIL 无法处理给定的 numpy 数组的数据类型。具体来说,给定的 numpy 数组的形状是 (1,1,47),数据类型是 <f8,即浮点数类型。通常情况下,PIL 可以处理的 numpy 数组的数据类型包括 uint8、int8、uint16、int16、int32、float32 等,但是它不能处理像 <f8 这样的浮点数类型。为了解决这个问题,可以将给定的 numpy 数组的数据类型转换为 PIL 可以处理的类型,例如 uint8 或 int16。可以使用 numpy 库中的 astype() 方法来进行数据类型转换。下面是一个示例代码:
```python
import numpy as np
from PIL import Image
# 假设 arr 是一个形状为 (1,1,47) 的 numpy 数组,数据类型为 <f8
arr = np.random.randn(1,1,47)
# 将数据类型转换为 uint8
arr = np.clip(arr, 0, 255) # 将数据限制在 0~255 的范围内
arr = arr.astype(np.uint8)
# 使用 fromarray 方法创建 PIL 图像对象
img = Image.fromarray(arr)
```
这个代码先将数据限制在 0~255 的范围内,然后将数据类型转换为 uint8,并使用 fromarray 方法创建 PIL 图像对象。
用eca_resnet50进行图像去噪,包含train.py、val,py、test.py,并在test.py中导出去噪后的图片
好的,首先需要安装相关的库,包括PyTorch、torchvision、Pillow、numpy等。
接着,我们可以定义一个 `ECA_ResNet50` 类,实现图像去噪的功能。具体实现代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ECABlock(nn.Module):
def __init__(self, channels, kernel_size, gamma=2, b=1):
super(ECABlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size, padding=(kernel_size - 1) // 2, bias=False)
self.sigmoid = nn.Sigmoid()
self.fc = nn.Sequential(
nn.Linear(channels, channels // gamma),
nn.ReLU(inplace=True),
nn.Linear(channels // gamma, channels)
)
self.bn = nn.BatchNorm2d(channels, affine=False)
self.b = b
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x)
y = self.conv(y.squeeze(-1).transpose(-1, -2))
y = y.transpose(-1, -2).unsqueeze(-1)
y = self.sigmoid(y)
y = x * y.expand_as(x)
z = self.fc(y.view(b, c)).view(b, c, 1, 1)
out = self.bn(z) * self.b + x
return out
class ECA_ResNet50(nn.Module):
def __init__(self, num_classes=10):
super(ECA_ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ECABlock(256, 3),
ECABlock(256, 3),
ECABlock(256, 3)
)
self.layer2 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ECABlock(512, 3),
ECABlock(512, 3),
ECABlock(512, 3),
ECABlock(512, 3)
)
self.layer3 = nn.Sequential(
nn.Conv2d(512, 1024, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3)
)
self.layer4 = nn.Sequential(
nn.Conv2d(1024, 2048, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(2048),
nn.ReLU(inplace=True),
ECABlock(2048, 3),
ECABlock(2048, 3),
ECABlock(2048, 3)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
接下来,我们需要定义训练、验证和测试函数。训练函数中,我们使用 `nn.MSELoss()` 作为损失函数,使用 `torch.optim.Adam()` 作为优化器,设置学习率为 0.001,训练 50 个 epoch,每个 epoch 中,我们先将模型设置为训练模式,然后遍历训练集中的每一个 batch,将输入的图像加上噪声,将加噪后的图像送入网络中,计算输出和目标图像的均方误差,并更新网络参数。每个 epoch 完成后,我们调用验证函数,计算模型在验证集上的准确率。测试函数中,我们遍历测试集中的每一个样本,将其送入网络中,得到去噪后的图像,并保存到指定的文件夹中。
具体实现代码如下:
```python
import os
import numpy as np
import argparse
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torchvision.transforms as transforms
def train(net, trainloader, criterion, optimizer, device):
net.train()
train_loss = 0
for i, (inputs, targets) in enumerate(trainloader):
inputs = inputs.to(device)
targets = targets.to(device)
inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device)
optimizer.zero_grad()
outputs = net(inputs_noisy)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(trainloader)
def val(net, valloader, criterion, device):
net.eval()
total = 0
correct = 0
val_loss = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(valloader):
inputs = inputs.to(device)
targets = targets.to(device)
inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device)
outputs = net(inputs_noisy)
loss = criterion(outputs, inputs)
val_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
return val_loss / len(valloader), correct / total
def test(net, testloader, device, output_dir):
net.eval()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for i, (inputs, filename) in enumerate(testloader):
inputs = inputs.to(device)
inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device)
outputs = net(inputs_noisy)
denoised_img = outputs.detach().cpu()
save_image(denoised_img, os.path.join(output_dir, filename[0]))
def main():
parser = argparse.ArgumentParser(description="Image Denoising with ECA-ResNet50")
parser.add_argument('--train-data', type=str, default='./train', help='path to the train data')
parser.add_argument('--val-data', type=str, default='./val', help='path to the validation data')
parser.add_argument('--test-data', type=str, default='./test', help='path to the test data')
parser.add_argument('--output-dir', type=str, default='./output/', help='output directory')
parser.add_argument('--num-epochs', type=int, default=50, help='number of epochs to train')
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--num-workers', type=int, default=4, help='number of workers for data loading')
parser.add_argument('--cuda', action='store_true', help='use cuda')
args = parser.parse_args()
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
val_transform = transforms.Compose([
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.ToTensor()
])
trainset = ImageFolderWithFilename(args.train_data, transform=train_transform)
trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
valset = ImageFolderWithFilename(args.val_data, transform=val_transform)
valloader = DataLoader(valset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
testset = ImageFolderWithFilename(args.test_data, transform=test_transform)
testloader = DataLoader(testset, batch_size=1, shuffle=False, num_workers=args.num_workers)
device = torch.device('cuda' if args.cuda and torch.cuda.is_available() else 'cpu')
net = ECA_ResNet50().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
for epoch in range(args.num_epochs):
train_loss = train(net, trainloader, criterion, optimizer, device)
val_loss, val_acc = val(net, valloader, criterion, device)
print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'.format(
epoch+1, args.num_epochs, train_loss, val_loss, val_acc))
test(net, testloader, device, args.output_dir)
class ImageFolderWithFilename(torchvision.datasets.ImageFolder):
def __getitem__(self, index):
original_tuple = super().__getitem__(index)
path = self.imgs[index][0]
tuple_with_path = (original_tuple + (path,))
return tuple_with_path
if __name__ == '__main__':
main()
```
最后,我们可以通过以下命令运行代码:
```
python train.py --train-data <path_to_train_data> --val-data <path_to_validation_data> --test-data <path_to_test_data> --output-dir <path_to_output_directory> --num-epochs 50 --batch-size 32 --lr 0.001 --num-workers 4 --cuda
```
其中,`<path_to_train_data>`、`<path_to_validation_data>` 和 `<path_to_test_data>` 分别为训练集、验证集和测试集的路径,`<path_to_output_directory>` 为输出文件夹的路径。`--num-epochs`、`--batch-size`、`--lr` 和 `--num-workers` 分别表示训练的 epoch 数、batch size、学习率和数据加载的线程数。`--cuda` 表示使用 CUDA 进行训练(如果可用)。
阅读全文