pandas的df.reindex(new_index)
时间: 2024-05-12 11:19:23 浏览: 180
pandas的df.reindex(new_index)是将DataFrame重新索引的方法。它接受一个新的索引列表作为参数,并返回一个重新索引的DataFrame,其中原来索引中不存在的标签将被填充为NaN。如果新索引列表包含原来索引中不存在的标签,则新行将被添加到DataFrame中。
举个例子:
```python
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}, index=['a', 'b', 'c'])
print(df)
# 重新索引DataFrame
new_index = ['a', 'b', 'd', 'c']
df_reindexed = df.reindex(new_index)
print(df_reindexed)
```
输出:
```
A B C
a 1 4 7
b 2 5 8
c 3 6 9
A B C
a 1.0 4.0 7.0
b 2.0 5.0 8.0
d NaN NaN NaN
c 3.0 6.0 9.0
```
可以看到,新索引列表包含原来索引中不存在的标签"d",所以新行被添加到了DataFrame中,并用NaN填充。
相关问题
df = df.reindex(pd.date_range(df.head(1).index[0], df.tail(1).index[0], freq='H'))
This code is reindexing a pandas DataFrame called "df" with a new index that consists of hourly timestamps between the first and last timestamps in the original index.
The code first selects the first and last timestamps in the original index using the "head" and "tail" methods of the DataFrame, respectively. It then creates a new index using the "date_range" function from pandas, which generates a sequence of timestamps with a specified frequency ("H" for hourly in this case) between two given timestamps.
Finally, the DataFrame is reindexed with the new index using the "reindex" method, which returns a new DataFrame with the same columns as the original but with missing values (NaN) in rows that did not exist in the original index. This allows for easy filling or interpolation of missing data.
df.reindex
`df.reindex()`是Pandas库中用于对DataFrame对象的行或列进行重新索引的方法。它允许你按照新的标签(如整数、列表、数组或其他数据结构)重新组织DataFrame的数据,或者填充缺失值。这个操作可以用来调整DataFrame的大小、改变其索引顺序,甚至创建全新的索引。
当你调用`df.reindex(index=新索引)`时,你可以指定新的行索引;如果列也需要重置,可以使用`columns=新列索引`。如果你希望基于另一个序列填充缺失值,可以设置`fill_value`参数。此外,还有其他一些选项,比如`method`参数可以选择如何处理缺失值(默认是`ffill`向前填充),以及`level`参数在多级索引的情况下应用。
举个例子:
```python
import pandas as pd
# 假设df是一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=[0, 2, 1])
# 使用新索引重新排列
new_index = [1, 0, 2]
reindexed_df = df.reindex(new_index)
# 或者添加缺失值并填充
filled_df = df.reindex(index=[0, 1, 2], fill_value=0)
```
阅读全文