如何化简cov = 1/n∑_i=0^n▒P_i∙P_i^T−(1/n∑_i=0^n▒P_i)∙(1/n∑_i=0^n▒P_i)^T
时间: 2024-05-18 21:16:48 浏览: 91
R主成分分析_R语言/主成分分析_主成分分析_
5星 · 资源好评率100%
我们可以将协方差矩阵的式子进行展开和化简:
首先,将上式中的第一项展开,得到:
1/n∑_i=0^n▒P_i∙P_i^T = (P_0∙P_0^T + P_1∙P_1^T + ... + P_n∙P_n^T) / n
然后,将上式中的第二项展开,得到:
1/n∑_i=0^n▒P_i = (P_0 + P_1 + ... + P_n) / n
将其平方并展开,得到:
(1/n∑_i=0^n▒P_i)∙(1/n∑_i=0^n▒P_i)^T = (P_0 + P_1 + ... + P_n)∙(P_0 + P_1 + ... + P_n)^T / n^2
将其代入原始式子中,得到:
cov = (P_0∙P_0^T + P_1∙P_1^T + ... + P_n∙P_n^T) / n - (P_0 + P_1 + ... + P_n)∙(P_0 + P_1 + ... + P_n)^T / n^2
以上就是化简后的协方差矩阵的式子。
阅读全文