使用c语言编写使用了mpi算法的PageRank,其中数据集来自于文件
时间: 2024-02-09 11:12:14 浏览: 66
Fft.rar_fft 并行_fft 并行 mpi_fft编程_并行 fft_并行FFT算法
下面是一个使用了MPI算法的PageRank的C语言代码,它可以从文件中读取数据集:
```c
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define MAX_ITERATIONS 100
#define TOLERANCE 0.0001
int main(int argc, char **argv)
{
int rank, size, N, i, j, count, iterations;
double *x, *y, *local_x, *local_y, *A, *local_A, *recvbuf, sum, local_sum, start_time, end_time;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if(rank == 0){
FILE *fp = fopen("data.txt", "r");
fscanf(fp, "%d", &N);
x = (double*) malloc(N * sizeof(double));
y = (double*) malloc(N * sizeof(double));
A = (double*) malloc(N * N * sizeof(double));
for(i = 0; i < N; i++){
fscanf(fp, "%lf", &x[i]);
y[i] = 1.0 / N;
for(j = 0; j < N; j++){
fscanf(fp, "%lf", &A[i*N+j]);
}
}
fclose(fp);
}
MPI_Bcast(&N, 1, MPI_INT, 0, MPI_COMM_WORLD);
count = N / size;
local_x = (double*) malloc(count * sizeof(double));
local_y = (double*) malloc(count * sizeof(double));
local_A = (double*) malloc(count * N * sizeof(double));
recvbuf = (double*) malloc(N * sizeof(double));
MPI_Scatter(x, count, MPI_DOUBLE, local_x, count, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Scatter(y, count, MPI_DOUBLE, local_y, count, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Scatter(A, count*N, MPI_DOUBLE, local_A, count*N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
start_time = MPI_Wtime();
iterations = 0;
do{
iterations++;
local_sum = 0.0;
for(i = 0; i < count; i++){
sum = 0.0;
for(j = 0; j < N; j++){
sum += local_A[i*N+j] * local_y[j];
}
local_x[i] = sum;
local_sum += sum;
}
MPI_Allgather(local_x, count, MPI_DOUBLE, recvbuf, count, MPI_DOUBLE, MPI_COMM_WORLD);
for(i = 0; i < N; i++){
local_y[i] = recvbuf[i];
}
MPI_Allreduce(&local_sum, &sum, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
for(i = 0; i < count; i++){
local_x[i] = local_x[i] / sum;
}
MPI_Allgather(local_x, count, MPI_DOUBLE, recvbuf, count, MPI_DOUBLE, MPI_COMM_WORLD);
for(i = 0; i < N; i++){
local_y[i] = recvbuf[i];
}
local_sum = 0.0;
for(i = 0; i < count; i++){
local_sum += (local_x[i] - local_y[i]) * (local_x[i] - local_y[i]);
}
MPI_Allreduce(&local_sum, &sum, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
}while(iterations < MAX_ITERATIONS && sum > TOLERANCE);
end_time = MPI_Wtime();
if(rank == 0){
printf("Final PageRank values:\n");
for(i = 0; i < N; i++){
printf("%d: %lf\n", i, y[i]);
}
printf("Time taken: %lf seconds\n", end_time - start_time);
}
MPI_Finalize();
return 0;
}
```
该代码使用了scatter、allgather、allreduce等MPI函数来实现PageRank算法。在运行该代码之前,需要将数据集存储在名为"data.txt"的文件中,其中第一行为数据集的大小N,接下来的N行为x向量和N*N的矩阵A。
注意,该代码的运行需要MPI运行环境的支持。可以使用mpicc编译器来编译该代码:
```
mpicc -o pagerank pagerank.c
```
然后使用mpirun命令来运行:
```
mpirun -n 4 ./pagerank
```
其中"-n 4"表示使用4个进程来运行该程序。
阅读全文