index_ = coef[coef !=0].index rforest_x = x[index_] rforest_y = y standardscaler = StandardScaler()这段代码的含义
时间: 2023-03-13 14:19:25 浏览: 60
这段代码用于构建一个随机森林模型,其中的index_用于提取X矩阵中的不为0的系数,rforest_x和rforest_y用于存储提取后的X矩阵和标签,standardscaler可以对X矩阵和标签进行标准化处理。
相关问题
解释代码features_poly = poly_transformer.get_feature_names(features) features_nonzero = np.array(features_poly)[lr.coef_ != 0] coef_nonzero = lr.coef_[lr.coef_ != 0]
- `poly_transformer.get_feature_names(features)`:这行代码使用 `poly_transformer` 对象对输入特征 `features` 进行多项式转换,并返回转换后的特征名称列表。
- `features_nonzero = np.array(features_poly)[lr.coef_ != 0]`:这行代码创建 `features_nonzero` 数组,其中包含了那些与非零系数相关的多项式特征。`np.array(features_poly)` 将多项式特征名称列表转换为 NumPy 数组,然后 `lr.coef_ != 0` 返回了一个大小与回归模型系数数组相同的布尔数组,指示哪些系数不为零。通过将这个布尔数组作为索引应用于特征名称数组,我们得到了与非零系数相关的特征名称数组。
- `coef_nonzero = lr.coef_[lr.coef_ != 0]`:这行代码创建 `coef_nonzero` 数组,其中包含了那些非零系数的回归模型系数。与上一行代码类似,`lr.coef_ != 0` 返回了一个布尔数组,其中指示哪些系数不为零。通过将这个布尔数组作为索引应用于 `lr.coef_`,我们得到了一个包含非零系数的数组 `coef_nonzero`,其大小与 `features_nonzero` 相同。
linear_fit = LinearRegression().fit(x, y) logit_fit = LogisticRegression().fit(x, y.ravel()) prob_fit = GaussianNB().fit(x, y.ravel()) coef_mat = np.column_stack((prob_fit.theta.T, logit_fit.coef_, linear_fit.coef_)) print(coef_mat) prop_mat = np.column_stack((prob_fit.theta_.T / logit_fit.coef_, prob_fit.theta_.T / linear_fit.coef_, logit_fit.coef_ / linear_fit.coef_))
这段代码看起来是进行了一些机器学习中的模型拟合和系数计算。首先,使用 LinearRegression、LogisticRegression 和 GaussianNB 分别对输入数据 x 和 y 进行拟合,得到线性回归、逻辑回归和高斯朴素贝叶斯模型的系数。接着,将这些系数按列方向拼接成一个矩阵 coef_mat,用于后续的分析。最后,计算三种模型系数之间的比例,得到一个比例矩阵 prop_mat,也用于后续的分析。具体分析的内容需要看后续代码,但是这段代码的作用是先进行模型拟合,然后计算模型系数并进行比较和分析。
阅读全文