nx.draw_networkx_edges

时间: 2023-05-31 15:19:04 浏览: 227
### 回答1: nx.draw_networkx_edges是NetworkX库中用于绘制网络图中边的函数。它可以根据给定的节点和边的信息,绘制出网络图中的边,并可以设置边的颜色、线条粗细、线条样式等属性。该函数可以用于可视化网络结构、分析网络拓扑结构等应用场景。 ### 回答2: nx.draw_networkx_edges 是 NetworkX 库中用于绘制网络图中边的函数。该函数可以接受多种参数和选项来绘制边的样式和属性。下面对一些常用的参数和选项进行介绍: 1. G:图形对象。该参数指定了要绘制的网络图形对象。 2. pos:节点位置的指定方式。该参数指定了节点在图形中的位置。可以是一个字典,每个节点对应一组坐标;也可以是一个函数或方法,该函数或方法根据节点标签返回节点位置。 3. edgelist:指定要绘制的边列表。该参数可以是一个由边组成的列表,也可以是一个边迭代器或任何可迭代对象。 4. width:边的宽度。该参数控制边的线条粗细程度。可以是一个数字,代表边的粗细程度;也可以是一个由边组成的元组,对应每条边的线条粗细程度。 5. arrows:是否显示箭头。该参数可以控制边上是否显示箭头。可以是 True 或 False。如果是 True,表示要显示箭头;如果是 False,则不显示箭头。 6. style:边的样式。该参数可以指定边线条的样式。可以是 "solid"、"dashed"、"dashdot" 或 "dotted" 中的一种。 7. alpha:边的透明度。该参数控制边的不透明度。可以是 [0, 1] 之间的浮点数,表示边的不透明度。 8. edge_color:边的颜色。该参数指定边的颜色。可以是一个颜色名称字符串,例如 "red"、"blue" 等,也可以是 RBG 元组。 以上是一些常用参数和选项的介绍,使用这些参数和选项,可以绘制各种样式和属性的网络图。值得注意的是,nx.draw_networkx_edges 函数只绘制边的形状,边的标签、权重和其他属性需要使用其他函数或方法单独设置。 ### 回答3: nx.draw_networkx_edges是NetworkX绘制网络图中的一种方法,它用于绘制连接节点的边。该方法共有五个参数,具体如下: 1. G:表示待绘制的网络图。 2. pos:表示节点位置。pos是一个字典,用于表示每个节点在坐标系中的位置。通常,可以使用NetworkX提供的算法计算节点的位置。 3. edgelist:表示待绘制的边。如果未指定该参数,则默认绘制G所有的边。 4. width:表示边的线宽。默认值为1.0。 5. alpha:表示边的透明度。该参数用于控制边的颜色深度,建议使用透明度的值范围为0到1。 此外,nx.draw_networkx_edges方法还支持设置连边的颜色、样式等属性。可以通过设置edge_color、edge_cmap、style等参数来实现这些特性。一般情况下,可以使用默认设置即可,如果需要自定义连边的颜色、样式或线宽,则需要对这些参数进行设置。 总之,nx.draw_networkx_edges是一个用于绘制网络图中连接节点的边的方法,它支持多种样式和属性的设置,帮助用户实现更加个性化的网络图绘制。
阅读全文

相关推荐

import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt # 读取Excel文件中的邻接矩阵 adjacency_matrix = pd.read_excel('output.xlsx', index_col=0) # 将邻接矩阵转换为numpy数组 adjacency_matrix = adjacency_matrix.to_numpy() # 创建有向图对象 G = nx.DiGraph(adjacency_matrix) def preprocess(G): p = 0 directedGraph = nx.DiGraph() for u in G.nodes(): for v in G.neighbors(u): if (v != u): propProb = G.number_of_edges(u, v) / G.degree(v) directedGraph.add_edge(u, v, pp=propProb) return directedGraph def simulate(G, seedNode, propProbability): newActive = True currentActiveNodes = seedNode.copy() newActiveNodes = set() activatedNodes = seedNode.copy() influenceSpread = len(seedNode) while newActive: for node in currentActiveNodes: for neighbor in G.neighbors(node): if neighbor not in activatedNodes: if G[node][neighbor]['pp'] > propProbability: newActiveNodes.add(neighbor) activatedNodes.append(neighbor) influenceSpread += len(newActiveNodes) if newActiveNodes: currentActiveNodes = list(newActiveNodes) newActiveNodes = set() else: newActive = False return influenceSpread def flipCoin(probability): return np.random.random() < probability # 可视化传播过程 def visualizePropagation(G, seedNode, propProbability): pos = nx.spring_layout(G) # 选择布局算法 labels = {node: node for node in G.nodes()} # 节点标签为节点名 colors = ['r' if node in seedNode else 'b' for node in G.nodes()] # 种子节点为红色,其他节点为蓝色 plt.figure(figsize=(10,6)) nx.draw_networkx_nodes(G, pos, node_color=colors) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos, labels) plt.title('Propagation Visualization') plt.show() # 示例用法 seedNode = [7,36,17] propProbability = 0.7 directedGraph = preprocess(G) influenceSpread = simulate(directedGraph, seedNode, propProbability) print("Influence Spread:", influenceSpread) visualizePropagation(directedGraph, seedNode, propProbability)修改这个代码使得输出图形节点之间间隔合理能够看清

import networkx as nx import matplotlib.pyplot as plt # 输入数据 locations = [ [125.330802,125.401931,125.326444,125.332284,125.322837,125.32563,125.334942,125.378548,125.386251,125.426883,125.42665,125.437111,125.453763,125.431396,125.430705,125.41968,125.437906,125.404171,125.385772,125.341942,125.341535,125.300812,125.307316,125.345642,125.331492,125.330322,125.284474,125.334851,125.30606,125.377211,125.381077,125.417041,125.41427,125.416371,125.432283,125.401676,125.403855,125.38582,125.426733,125.291], [43.917542,43.919075,43.905821,43.90266,43.900238,43.89703,43.888187,43.904508,43.892574,43.907904,43.896354,43.894605,43.889122,43.88774,43.882928,43.887149,43.8789,43.879647,43.883112,43.873763,43.861505,43.854652,43.876513,43.850479,43.833745,43.825044,43.812019,43.803154,43.793054,43.788869,43.824152,43.816805,43.801673,43.82893,43.83235,43.843713,43.854322,43.868372,43.871792,43.8306] ] num_flights = 4 flight_capacity = [10, 10, 10, 10] # 将坐标转化为图 G = nx.Graph() for i in range(len(locations[0])): G.add_node(i+1, pos=(locations[0][i], locations[1][i])) for i in range(len(locations[0])): for j in range(i+1, len(locations[0])): dist = ((locations[0][i]-locations[0][j])**2 + (locations[1][i]-locations[1][j])**2)**0.5 G.add_edge(i+1, j+1, weight=dist) # 添加起点和终点 start_node = len(locations[0])+1 end_node = len(locations[0])+2 G.add_node(start_node, pos=(0, 0)) G.add_node(end_node, pos=(0, 0)) # 添加边和边权 for i in range(len(locations[0])): G.add_edge(start_node, i+1, weight=0) G.add_edge(i+1, end_node, weight=0) for f in range(num_flights): for i in range(len(locations[0])): G.add_edge(i+1, len(locations[0])+flen(locations[0])+i+1, weight=0) G.add_edge(len(locations[0])+flen(locations[0])+i+1, end_node, weight=0) # 添加航班容量的限制 for f in range(num_flights): for i in range(len(locations[0])): G.add_edge(len(locations[0])+flen(locations[0])+i+1, len(locations[0])+flen(locations[0])+len(locations[0])+1, weight=-flight_capacity[f]) # 创造路径规划模型 path_model = nx.DiGraph() for i in range(len(locations[0])): for f in range(num_flights): for j in range(len(locations[0])): if i != j: path_model.add_edge(len(locations[0])+flen(locations[0])+i+1, len(locations[0])+flen(locations[0])+j+1, weight=G[i+1][j+1]['weight']+G[len(locations[0])+flen(locations[0])+i+1][len(locations[0])+flen(locations[0])+j+1]['weight']) # 添加航班时间的限制 for f in range(num_flights): for i in range(len(locations[0])): for j in range(len(locations[0])): if i != j: path_model.add_edge(len(locations[0])+f*len(locations[0])+i+1, len(locations[0])+((f+1)%num_flights)len(locations[0])+j+1, weight=G[i+1][j+1]['weight']) # 求解最短路径 path = nx.bellman_ford_path(path_model, source=start_node, target=end_node, weight='weight') # 绘制路径图 pos = nx.get_node_attributes(G, 'pos') nx.draw_networkx_nodes(G, pos, node_size=50, node_color='w') nx.draw_networkx_labels(G, pos) nx.draw_networkx_edges(G, pos, edgelist=G.edges(), width=0.5) for f in range(num_flights): start = len(locations[0])+flen(locations[0])+1 end = len(locations[0])+(f+1)*len(locations[0])+1 nx.draw_networkx_edges(G, pos, edgelist=path[start:end], edge_color='r', width=2.0, alpha=0.7) plt.axis('off') plt.show()找出错误并改正

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自