编写函数实现输入两个整数m和n,求最大公约数和最小公倍数。
时间: 2024-04-30 14:21:44 浏览: 134
以下是 Python 代码实现:
```python
def gcd(m, n):
# 求最大公约数
while n != 0:
temp = m % n
m = n
n = temp
return m
def lcm(m, n):
# 求最小公倍数
return m * n // gcd(m, n)
m = int(input("请输入第一个整数:"))
n = int(input("请输入第二个整数:"))
print("最大公约数为:", gcd(m, n))
print("最小公倍数为:", lcm(m, n))
```
以上代码中,`gcd` 函数用于求最大公约数,采用辗转相除法实现;`lcm` 函数用于求最小公倍数,直接使用公式 `m * n / gcd(m, n)` 实现。最后,通过 `input` 函数获取用户输入的两个整数,并分别调用 `gcd` 和 `lcm` 函数求解并输出结果。
相关问题
Go编写输入两个正整数m和n,求其最大公约数和最小公倍数。 输入两个正整数m和n,求其最大公约数和最小公倍数。 输入格式: 请输入第一个正整数 m: 请输入第二个正整数 n: 输出格式: 最大公约数为:4 最小公倍数为:48 输入样例: 12 16 输出样例: 最大公约数为:4 最小公倍数为:48
好的,这是一个比较基础的问题,可以使用辗转相除法来求解最大公约数,然后通过公式计算最小公倍数。以下是 Go 编写的答案:
```go
package main
import "fmt"
func main() {
var m, n int
fmt.Println("请输入第一个正整数 m:")
fmt.Scan(&m)
fmt.Println("请输入第二个正整数 n:")
fmt.Scan(&n)
// 求最大公约数
a, b := m, n
for b != 0 {
a, b = b, a%b
}
fmt.Printf("最大公约数为:%d\n", a)
// 求最小公倍数
lcm := m * n / a
fmt.Printf("最小公倍数为:%d\n", lcm)
}
```
这个代码思路也比较简单,就是先输入两个整数,然后使用辗转相除法求出最大公约数,最后根据公式计算最小公倍数。在代码中,我们使用了 `fmt` 包提供的 `Scan` 函数来读取用户输入的整数,使用 `for` 循环来实现辗转相除法。
c语言最大公约数与最小公倍数: 编写一个函数来求两个整数的最大公约数,另编写一个函数来求两个整数的最小公倍数。在主函数中调用这两个函数,输入两个整数,输出它们的最大公约数和最小公倍数。
在C语言中,你可以通过以下方式实现求两个整数的最大公约数(GCD)和最小公倍数(LCM):
1. **求最大公约数**[^1]:
使用欧几里得算法(辗转相除法),其基本思想是:对于两个正整数a和b,它们的最大公约数等于a除以b的余数c和b之间的最大公约数。如果余数为0,则b即为最大公约数。
```c
int gcd(int m, int n) {
int k, a, b;
if (m <= 0 || n <= 0) {
printf("Error\n");
} else {
if (m < n) {
a = n;
b = m;
} else {
a = m;
b = n;
}
while (b != 0) {
k = a % b;
a = b;
b = k;
}
return a;
}
}
```
2. **求最小公倍数**:
最小公倍数可以通过两数乘积除以最大公约数得到,公式为:`LCM(a, b) = |a * b| / GCD(a, b)`。
```c
int lcm(int m, int n) {
return abs(m * n) / gcd(m, n);
}
```
在主函数中调用这两个函数,示例如下:
```c
int main() {
int num1 = 25, num2 = 75;
int gcdResult = gcd(num1, num2);
int lcmResult = lcm(num1, num2);
printf("The GCD of %d and %d is: %d\n", num1, num2, gcdResult);
printf("The LCM of %d and %d is: %d\n", num1, num2, lcmResult);
return 0;
}
```
运行上述程序会输出25和75的最大公约数和最小公倍数。
阅读全文