用牛顿迭代法求f(x,y)=sin(x.^2 + y.^2) .* exp(-0.1 .* (x.^2 + y.^2 + x.*y + 2*x));在-2=<x,y<=2内的极小值点的matlab代码,要求不引用库函数
时间: 2024-10-05 13:00:48 浏览: 35
为了使用牛顿迭代法在无库函数的情况下求解给定函数 `f(x, y) = \sin(x^2 + y^2) \cdot e^{-0.1 \cdot (x^2 + y^2 + xy + 2x)}` 的极小值点,我们需要手动编写梯度和Hessian矩阵的计算。这里是一个简单的例子,展示了如何逐步实现这个过程:
首先,我们定义函数及其一阶和二阶导数(梯度和Hessian矩阵):
```matlab
function dfdx = gradient_f(x, y)
dfdx(1) = 2 * x * cos(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x)) - 0.2 * x * sin(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x));
dfdx(2) = 2 * y * cos(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x)) - 0.2 * x * y * exp(-0.1 * (x^2 + y^2 + x*y + 2*x));
end
function dfdxx = hessian_f(x, y)
dfdxx(1, 1) = 4 * x^2 * cos(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x)) - 0.2 * (2 * x^2 + 2 * y^2 + 2 * xy + 4) * sin(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x)) - 0.2 * x * exp(-0.1 * (x^2 + y^2 + x*y + 2*x));
dfdxx(1, 2) = dfdxx(2, 1) = 2 * x * y * (-2 * cos(x^2 + y^2) + exp(-0.1 * (x^2 + y^2 + x*y + 2*x))) - 0.2 * y * exp(-0.1 * (x^2 + y^2 + x*y + 2*x));
dfdxx(2, 2) = 4 * y^2 * cos(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x)) - 0.2 * (2 * x^2 + 2 * y^2 + 2 * xy + 4) * sin(x^2 + y^2) * exp(-0.1 * (x^2 + y^2 + x*y + 2*x)) - 0.2 * x * y * exp(-0.1 * (x^2 + y^2 + x*y + 2*x));
end
```
然后,你可以编写牛顿迭代法的主循环来搜索极小值:
```matlab
function [min_point, min_value] = find_minima()
lower_bound = [-2, -2];
upper_bound = [2, 2];
% 设置初始点和迭代设置
initial_guess = [0, 0];
max_iterations = 100;
tolerance = 1e-6;
x = initial_guess;
for i = 1:max_iterations
% 计算梯度和Hessian
[grad, hess] = [gradient_f(x(1), x(2)), hessian_f(x(1), x(2))];
% 检查边界条件
if all(x >= lower_bound & x <= upper_bound)
% 牛顿迭代
dx = inv(hess) \ -grad;
x = x + dx;
% 收敛测试
if norm(dx) < tolerance
break;
end
else
warning('已到达边界,可能无法找到内部极小值');
break;
end
end
% 输出结果
min_point = x;
min_value = f(min_point(1), min_point(2)); % 使用函数计算最小值
end
[min_point, min_value]
```
注意:这只是一个基础示例,实际应用中可能需要添加更多的错误处理和迭代策略优化。
阅读全文