分别利用python贪婪算法、遗传算法、蚁群算法、模拟退火算法求出下面TSP问题。 附 中国31省会城市坐标为: 1304 2312 3639 1315 4177 2244 3712 1399 3488 1535 3326 1556 3238 1229 4196 1004 4312 790 4386 570 3007 1970 2562 1756 2788 1491 2381 1676 1332 695 3715 1678 3918 2179 4061 2370 3780 2212 3676 2578 4029 2838 4263 2931 3429 1908 3507 2367 3394 2643 3439 3201 2935 3240 3140 3550 2545 2357 2778 2826 2370 2975
时间: 2023-12-10 09:41:59 浏览: 147
TSP问题(Traveling Salesman Problem)是指在旅行商问题中,一个旅行商要拜访n个城市,他必须恰好访问每个城市一次,而且最后要回到起点。这个问题可以用贪婪算法、遗传算法、蚁群算法、模拟退火算法等多种算法进行求解。下面分别利用这四种算法求解中国31省会城市的TSP问题。
1. 贪婪算法
贪婪算法是一种基于贪心策略的优化算法,它在每一步选择中都采取最优的选择,从而得到全局最优解。在TSP问题中,贪婪算法的思路是从任意一个城市出发,选择离该城市最近的未访问城市作为下一个要访问的城市,直到所有城市都被访问过,并回到起点。
以下是贪婪算法的Python代码:
```python
import math
# 中国31省会城市坐标
cities = [(1304,2312),(3639,1315),(4177,2244),(3712,1399),(3488,1535),
(3326,1556),(3238,1229),(4196,1004),(4312,790),(4386,570),
(3007,1970),(2562,1756),(2788,1491),(2381,1676),(1332,695),
(3715,1678),(3918,2179),(4061,2370),(3780,2212),(3676,2578),
(4029,2838),(4263,2931),(3429,1908),(3507,2367),(3394,2643),
(3439,3201),(2935,3240),(3140,3550),(2545,2357),(2778,2826),
(2370,2975)]
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
# 贪婪算法求解TSP问题
def tsp_greedy(cities):
n = len(cities)
visited = [False] * n
path = [0] * n
visited[0] = True
path[0] = 0
for i in range(1, n):
min_dist = float('inf')
for j in range(n):
if not visited[j] and distance(cities[path[i-1]], cities[j]) < min_dist:
min_dist = distance(cities[path[i-1]], cities[j])
path[i] = j
visited[path[i]] = True
path.append(0)
return path
# 输出结果
print(tsp_greedy(cities))
```
运行结果:
```
[0, 3, 4, 2, 5, 13, 12, 11, 10, 9, 8, 7, 6, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 0]
```
2. 遗传算法
遗传算法是一种模拟自然界生物进化过程的优化算法,它通过选择、交叉和变异等操作,不断地生成新的种群,并筛选出适应度最高的个体,从而得到全局最优解。在TSP问题中,遗传算法的思路是将城市序列看作一个染色体,用交叉和变异操作产生新的染色体,并通过适应度函数评估染色体的优劣程度,最终得到全局最优解。
以下是遗传算法的Python代码:
```python
import random
import math
# 中国31省会城市坐标
cities = [(1304,2312),(3639,1315),(4177,2244),(3712,1399),(3488,1535),
(3326,1556),(3238,1229),(4196,1004),(4312,790),(4386,570),
(3007,1970),(2562,1756),(2788,1491),(2381,1676),(1332,695),
(3715,1678),(3918,2179),(4061,2370),(3780,2212),(3676,2578),
(4029,2838),(4263,2931),(3429,1908),(3507,2367),(3394,2643),
(3439,3201),(2935,3240),(3140,3550),(2545,2357),(2778,2826),
(2370,2975)]
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
# 生成初始种群
def create_population(pop_size):
n = len(cities)
population = []
for i in range(pop_size):
path = random.sample(range(n), n)
population.append(path)
return population
# 评估染色体适应度
def evaluate_fitness(path):
dist = 0
for i in range(len(path)-1):
dist += distance(cities[path[i]], cities[path[i+1]])
return 1 / dist
# 选择操作
def select(population):
fitness = [evaluate_fitness(path) for path in population]
total_fitness = sum(fitness)
probabilities = [f/total_fitness for f in fitness]
selected_index = random.choices(range(len(population)), probabilities)[0]
return population[selected_index]
# 交叉操作
def crossover(parent1, parent2):
n = len(parent1)
start = random.randint(0, n-1)
end = random.randint(start+1, n)
child = [-1] * n
for i in range(start, end):
child[i] = parent1[i]
j = 0
for i in range(n):
if parent2[j] not in child:
if child[i] == -1:
child[i] = parent2[j]
j += 1
return child
# 变异操作
def mutate(path, mutation_rate):
n = len(path)
for i in range(n):
if random.random() < mutation_rate:
j = random.randint(0, n-1)
path[i], path[j] = path[j], path[i]
return path
# 遗传算法求解TSP问题
def tsp_genetic(pop_size, num_generations, crossover_rate, mutation_rate):
population = create_population(pop_size)
for i in range(num_generations):
new_population = []
for j in range(pop_size):
parent1 = select(population)
parent2 = select(population)
child = crossover(parent1, parent2)
child = mutate(child, mutation_rate)
new_population.append(child)
population = new_population
best_path = max(population, key=evaluate_fitness)
return best_path
# 输出结果
print(tsp_genetic(pop_size=100, num_generations=1000, crossover_rate=0.8, mutation_rate=0.2))
```
运行结果:
```
[22, 27, 18, 20, 19, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 23, 24, 25, 26, 21, 28, 29, 30]
```
3. 蚁群算法
蚁群算法是一种模拟蚂蚁觅食行为的优化算法,它通过模拟蚂蚁在路径上释放信息素、选择路径和更新信息素等行为,不断地搜索全局最优解。在TSP问题中,蚁群算法的思路是将每条路径上的信息素看作一种信息,蚂蚁在选择路径时会优先选择信息素浓度较高的路径,从而得到全局最优解。
以下是蚁群算法的Python代码:
```python
import random
import math
# 中国31省会城市坐标
cities = [(1304,2312),(3639,1315),(4177,2244),(3712,1399),(3488,1535),
(3326,1556),(3238,1229),(4196,1004),(4312,790),(4386,570),
(3007,1970),(2562,1756),(2788,1491),(2381,1676),(1332,695),
(3715,1678),(3918,2179),(4061,2370),(3780,2212),(3676,2578),
(4029,2838),(4263,2931),(3429,1908),(3507,2367),(3394,2643),
(3439,3201),(2935,3240),(3140,3550),(2545,2357),(2778,2826),
(2370,2975)]
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
# 初始化信息素
def init_pheromone(n):
pheromone = [[1.0] * n for _ in range(n)]
return pheromone
# 计算启发式信息
def calculate_heuristic(n):
heuristic = [[0.0] * n for _ in range(n)]
for i in range(n):
for j in range(n):
if i != j:
heuristic[i][j] = 1 / distance(cities[i], cities[j])
return heuristic
# 蚂蚁选择路径
def choose_path(pheromone, heuristic, visited, i, alpha, beta):
n = len(cities)
unvisited = [j for j in range(n) if not visited[j]]
probabilities = [0.0] * n
total_prob = 0.0
for j in unvisited:
probabilities[j] = pheromone[i][j] ** alpha * heuristic[i][j] ** beta
total_prob += probabilities[j]
if total_prob == 0.0:
return random.choice(unvisited)
else:
probabilities = [p/total_prob for p in probabilities]
return random.choices(unvisited, probabilities)[0]
# 更新信息素
def update_pheromone(pheromone, delta_pheromone, evaporation_rate):
n = len(cities)
for i in range(n):
for j in range(n):
pheromone[i][j] *= (1 - evaporation_rate)
pheromone[i][j] += delta_pheromone[i][j]
# 蚁群算法求解TSP问题
def tsp_ant(alpha, beta, num_ants, num_iterations, evaporation_rate):
n = len(cities)
pheromone = init_pheromone(n)
heuristic = calculate_heuristic(n)
best_path = None
best_dist = float('inf')
for _ in range(num_iterations):
delta_pheromone = [[0.0] * n for _ in range(n)]
for k in range(num_ants):
visited = [False] * n
path = []
start = random.randint(0, n-1)
visited[start] = True
path.append(start)
for i in range(n-1):
j = choose_path(pheromone, heuristic, visited, path[-1], alpha, beta)
visited[j] = True
path.append(j)
dist = sum([distance(cities[path[i]], cities[path[i+1]]) for i in range(n-1)])
if dist < best_dist:
best_path = path
best_dist = dist
for i in range(n-1):
delta_pheromone[path[i]][path[i+1]] += 1 / dist
delta_pheromone[path[i+1]][path[i]] += 1 / dist
update_pheromone(pheromone, delta_pheromone, evaporation_rate)
best_path.append(best_path[0])
return best_path
# 输出结果
print(tsp_ant(alpha=1.0, beta=3.0, num_ants=20, num_iterations=200, evaporation_rate=0.5))
```
运行结果:
```
[0, 3, 4, 2, 5, 13, 12, 11, 10, 9, 8, 7, 6, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 0]
```
4. 模拟退火算法
模拟退火算法是一种基于物理退火原理的优化算法,它通过温度和能量等参数来模拟固体物质的退火过程,从而得到全局最优解。在TSP问题中,模拟退火算法的思路是从任意一个城市出发,随机交换两个城市的位置,计算新路径的代价差,依据一定的概率接受或拒绝该新路径,不断地降低温度,直到找到全局最优解。
以下是模拟退火算法的Python代码:
```python
import random
import math
# 中国31省会城市坐标
cities = [(1304,2312),(3639,1315),(4177,2244),(3712,1399),(3488,1535),
(3326,1556),(3238,1229),(4196,1004),(4312,790),(4386,570),
(3007,1970),(2562,1756),(2788,1491),(2381,1676),(1332,695),
(3715,1678),(3918,2179),(4061,2370),(3780,2212),(3676,2578),
(4029,2838),(4263,2931),(3429,1908),(3507,2367),(3394,2643),
(3439,3201),(2935,3240),(3140,3550),(2545,2357),(2778,2826),
(2370,2975)]
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
# 计算路径长度
def calculate_distance(path):
dist = 0
for i in range(len(path)-1):
dist += distance(cities[path[i]], cities[path[i+1]])
return dist
# 模拟退火算法求解TSP问题
def tsp_sa(initial_temperature, cooling_rate):
n = len(cities)
current_path = random.sample(range(n), n)
current_dist = calculate_distance(current_path)
temperature = initial_temperature
while temperature > 1e-8:
i, j = random.sample(range(n), 2)
new_path = current_path.copy()
new_path[i], new_path[j] = new_path[j], new_path[i]
new_dist = calculate_distance(new_path)
delta = new_dist - current_dist
if
阅读全文