若用二叉链表作为二叉树的存储表示,请设计算法求二叉树中度为 1 的结点个数。

时间: 2024-05-02 17:22:36 浏览: 11
可以按照以下算法实现求二叉树中度为1的节点个数: 1. 初始化变量 count 为0,根节点 root 入队。 2. 循环执行以下操作直到队列为空: 1) 出队一个节点p。 2) 如果p的左右孩子均为NULL,跳过当前循环,继续下一次循环。 3) 如果p只有左孩子或只有右孩子,则令 count 加1。 4) 如果p有左右孩子,将其左右孩子入队。 3. 返回 count 值即为二叉树中度为1的节点个数。 示例代码如下: ```python def count_degree_1(root): if not root: return 0 count = 0 queue = [root] while queue: p = queue.pop(0) if not p.left and not p.right: continue if not p.left or not p.right: count += 1 if p.left: queue.append(p.left) if p.right: queue.append(p.right) return count ```
相关问题

以二叉链表作为二叉树的存储结构,求二叉树的叶子结点个数。

### 回答1: 使用二叉链表作为二叉树的存储结构,可以通过遍历二叉树来求出二叉树的叶子结点个数。具体方法如下: 1. 如果二叉树为空,则叶子结点个数为。 2. 如果二叉树非空,则分别递归计算左子树和右子树的叶子结点个数。 3. 如果当前结点的左右子树都为空,则当前结点为叶子结点,叶子结点个数加1。 4. 最后返回左右子树叶子结点个数之和。 代码实现如下: ```python def count_leaves(root): if root is None: return if root.left is None and root.right is None: return 1 return count_leaves(root.left) + count_leaves(root.right) ``` 其中,root表示二叉树的根节点,left和right分别表示左子树和右子树。函数返回二叉树的叶子结点个数。 ### 回答2: 二叉链表是一种常见的二叉树的存储结构,它是由一个结构体构成,其中包含了该结点的信息(如值、父结点、左右儿子等),以及指向左右儿子结点的指针。对于二叉树的叶子结点,其左右儿子指针均为空。 要求二叉树的叶子结点个数,可以从根结点开始遍历整棵树,对于每个结点,判断其左右儿子是否为空,如果均为空,则该结点为叶子结点,计数器加1。如果左儿子不为空,则递归遍历左子树;如果右儿子不为空,则递归遍历右子树。最终,计数器的值即为二叉树的叶子结点个数。 具体的代码实现如下: ```python # 定义二叉树的结点类 class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None # 计算二叉树的叶子结点个数 def count_leaves(root): if root is None: return 0 if root.left is None and root.right is None: return 1 return count_leaves(root.left) + count_leaves(root.right) # 测试 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) print(count_leaves(root)) # 输出:4 ``` 在上面的代码中,我们首先定义了一个二叉树的结点类,包含了结点的值和左右儿子指针。然后,我们定义了一个递归函数 `count_leaves`,用来计算二叉树的叶子结点个数。具体实现中,我们先判断当前结点是否为叶子结点,如果是,则返回1;如果不是,则分别递归计算其左右子树的叶子结点个数,并将结果相加。最后,我们对整棵树调用 `count_leaves`,并输出结果。在上面的例子中,二叉树共有4个叶子结点,输出结果为4。 ### 回答3: 二叉链表是一种二叉树的存储结构,它是通过链表的方式来表示二叉树的结构。在二叉链表中,每个结点除了存放数据之外,还需要存放左右孩子的地址,这样才能表示二叉树的结构。 求二叉树的叶子结点个数,可以通过遍历二叉树来实现。遍历二叉树的方法有前序遍历、中序遍历和后序遍历,这里以中序遍历为例进行说明。 中序遍历是指按照左子树->根->右子树的顺序遍历二叉树。对于一个结点,如果其左右孩子为空,则该结点为叶子结点,否则继续递归遍历其左右子树。 下面给出求二叉树叶子结点个数的代码实现: ``` int countLeaves(Node* root) { if (root == nullptr) { return 0; } if (root->left == nullptr && root->right == nullptr) { // 当前结点为叶子结点 return 1; } // 递归遍历左右子树 return countLeaves(root->left) + countLeaves(root->right); } ``` 在这个代码中,root表示当前结点,如果其左右孩子均为空,则该结点为叶子结点,返回1,否则递归遍历其左右子树,并将它们的叶子结点个数相加作为当前结点的叶子结点个数。最后,通过递归汇总,就能得到整个二叉树的叶子结点个数了。 总之,二叉链表作为二叉树的存储结构,可以用递归的方式来遍历二叉树并求解叶子结点个数,这种方法简单易懂、代码实现方便,具有较高的实用性。

使用C语言以二叉链表作为二叉树的存储结构,编写用层次顺序遍历二叉树的方法,统计树中度为1 的结点个数

以下是使用C语言以二叉链表作为二叉树的存储结构,编写用层次顺序遍历二叉树的方法,统计树中度为1 的结点个数的代码。 ``` #include <stdio.h> #include <stdlib.h> // 定义二叉树结点的结构体 typedef struct TreeNode { int data; struct TreeNode* left; struct TreeNode* right; } TreeNode; // 定义队列结点的结构体 typedef struct QueueNode { TreeNode* data; struct QueueNode* next; } QueueNode; // 定义队列的结构体 typedef struct Queue { QueueNode* front; QueueNode* rear; } Queue; // 初始化队列 void initQueue(Queue* queue) { queue->front = NULL; queue->rear = NULL; } // 判断队列是否为空 int isQueueEmpty(Queue* queue) { return queue->front == NULL; } // 入队 void enqueue(Queue* queue, TreeNode* data) { QueueNode* newNode = (QueueNode*)malloc(sizeof(QueueNode)); newNode->data = data; newNode->next = NULL; if (isQueueEmpty(queue)) { queue->front = newNode; queue->rear = newNode; } else { queue->rear->next = newNode; queue->rear = newNode; } } // 出队 TreeNode* dequeue(Queue* queue) { if (isQueueEmpty(queue)) { printf("Queue is empty!\n"); return NULL; } else { TreeNode* data = queue->front->data; QueueNode* temp = queue->front; queue->front = queue->front->next; free(temp); return data; } } // 层次顺序遍历二叉树 void levelOrderTraversal(TreeNode* root, int* count) { if (root == NULL) { return; } Queue queue; initQueue(&queue); enqueue(&queue, root); while (!isQueueEmpty(&queue)) { TreeNode* node = dequeue(&queue); if (node->left != NULL) { enqueue(&queue, node->left); } if (node->right != NULL) { enqueue(&queue, node->right); } if ((node->left == NULL && node->right != NULL) || (node->left != NULL && node->right == NULL)) { (*count)++; } printf("%d ", node->data); } } int main() { // 构造二叉树 TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode)); root->data = 1; TreeNode* node1 = (TreeNode*)malloc(sizeof(TreeNode)); node1->data = 2; TreeNode* node2 = (TreeNode*)malloc(sizeof(TreeNode)); node2->data = 3; TreeNode* node3 = (TreeNode*)malloc(sizeof(TreeNode)); node3->data = 4; TreeNode* node4 = (TreeNode*)malloc(sizeof(TreeNode)); node4->data = 5; root->left = node1; root->right = node2; node1->left = node3; node1->right = NULL; node2->left = NULL; node2->right = node4; node3->left = NULL; node3->right = NULL; node4->left = NULL; node4->right = NULL; int count = 0; levelOrderTraversal(root, &count); printf("\nNumber of nodes with degree 1: %d\n", count); return 0; } ``` 运行结果: ``` 1 2 3 4 5 Number of nodes with degree 1: 2 ``` 在该代码中,我们使用了一个队列来存储二叉树中的结点,实现了层次顺序遍历。在遍历过程中,我们判断每个结点的左右子树是否为空,如果有一个为空,就说明该结点的度为1,将计数器加1。最后输出计数器的值即为树中度为1的结点个数。

相关推荐

最新推荐

recommend-type

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl.zip

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl
recommend-type

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)
recommend-type

基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不