在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。采用Prim算法。用C语言实现其完整算法。
时间: 2024-03-23 11:40:32 浏览: 59
好的,那我接下来就用Prim算法来解决这个问题,同样给出C语言的实现。
Prim算法的基本思路是:从一个初始顶点开始,每次找到一条权值最小的边,将对应的顶点加入到生成树中,直到所有的点都在生成树中为止。具体实现可以使用一个数组来记录每个顶点到生成树的距离,然后每次选择距离最近的顶点加入到生成树中,并更新其他顶点到生成树的距离。
以下是C语言实现Prim算法的代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define MAX_VERTICES 100
#define MAX_EDGES 10000
//边结构体
typedef struct {
int from, to, weight;
} Edge;
//Prim算法函数
void Prim(Edge** graph, int n) {
int* dist = (int*)malloc(sizeof(int) * n);
int* visited = (int*)malloc(sizeof(int) * n);
int* parent = (int*)malloc(sizeof(int) * n);
//初始化距离数组、访问数组和父节点数组
for (int i = 0; i < n; i++) {
dist[i] = INT_MAX;
visited[i] = 0;
parent[i] = -1;
}
//从顶点0开始生成树
dist[0] = 0;
for (int i = 0; i < n - 1; i++) {
//找到距离最近的顶点
int u = -1;
for (int j = 0; j < n; j++) {
if (!visited[j] && (u == -1 || dist[j] < dist[u])) {
u = j;
}
}
visited[u] = 1;
//更新与该顶点相邻的顶点到生成树的距离
for (int j = 0; j < n; j++) {
if (graph[u][j].weight != -1 && !visited[j] && graph[u][j].weight < dist[j]) {
dist[j] = graph[u][j].weight;
parent[j] = u;
}
}
}
//输出最小生成树的边权之和和边集合
int sum = 0;
printf("Edges:\n");
for (int i = 1; i < n; i++) {
printf("(%d, %d, %d)\n", parent[i], i, dist[i]);
sum += dist[i];
}
printf("Minimum cost: %d\n", sum);
free(dist);
free(visited);
free(parent);
}
int main() {
int n, m;
Edge** graph;
//输入城市数和道路数
printf("Enter the number of cities and roads:\n");
scanf("%d%d", &n, &m);
//初始化邻接矩阵
graph = (Edge**)malloc(sizeof(Edge*) * n);
for (int i = 0; i < n; i++) {
graph[i] = (Edge*)malloc(sizeof(Edge) * n);
for (int j = 0; j < n; j++) {
graph[i][j].weight = -1;
}
}
//输入每一条边的起点、终点和权值
printf("Enter the information of each road:\n");
for (int i = 0; i < m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
graph[u][v].from = u;
graph[u][v].to = v;
graph[u][v].weight = w;
graph[v][u].from = v;
graph[v][u].to = u;
graph[v][u].weight = w;
}
//求解最小生成树
Prim(graph, n);
//释放邻接矩阵的内存
for (int i = 0; i < n; i++) {
free(graph[i]);
}
free(graph);
return 0;
}
```
同样需要注意的是,这里的代码只是一个简单的实现示例,实际情况中可能需要对输入进行校验,防止越界等错误。
阅读全文