model = ARIMA(metro_in_train, order=(7,1,7)) result = model.fit()predictions = model.predict(start=1, end=532, typ='levels')
时间: 2024-06-09 14:09:08 浏览: 270
这段代码是用于进行时间序列分析的,具体来说是使用了ARIMA模型进行预测。ARIMA是一种常用的时间序列模型,可以用于预测未来的时间序列取值。在这段代码中,首先定义了一个ARIMA模型,其中order参数指定了模型的阶数,包括p、d、q三个参数。然后调用fit()方法拟合模型,并使用predict()方法进行预测,其中start和end参数指定了预测的起始和结束时间。最终得到的predictions变量是预测出来的时间序列取值。需要注意的是,这段代码中的metro_in_train变量应该是已经准备好的用于训练模型的时间序列数据。
相关问题
arima_model = ARIMA(train_ts, order=(1, 1, 1)) arima_result = arima_model.fit()pred_ts = [] for i in range(len(test_ts)): # 预测ARIMA模型的下一个值 arima_pred = arima_result.forecast()[0][0] # 使用GARCH模型计算方差 var = garch_result.forecast(horizon=1).variance.iloc[-1, 0] # 计算标准差 std = np.sqrt(var) # 计算置信区间 conf_int = (arima_pred - 1.96 * std, arima_pred + 1.96 * std) # 将预测结果添加到列表中 pred_ts.append(arima_pred) # 将预测结果添加到模型中 arima_result = arima_result.append(pd.Series([test_ts[i]], index=[test_ts.index[i]])) garch_result = garch_result.append(pd.Series([arima_result.resid[-1]], index=[test_ts.index[i]]))这段代码错误在哪怎么改正
这段代码没有明确指定 `garch_result`,可能会导致 `NameError` 错误。你需要在代码之前定义 `garch_result`,并确保其已经被初始化。
另外,如果 `test_ts` 是一个时间序列,那么在将预测结果添加到模型中时,可以使用 `pd.Series` 的 `at` 方法,而不是 `append` 方法,以提高性能。
以下是修改后的代码:
```
# 初始化 garch_result
garch_result = garch_model.fit(update_freq=5).forecast(horizon=len(test_ts), reindex=False)
arima_model = ARIMA(train_ts, order=(1, 1, 1))
arima_result = arima_model.fit()
pred_ts = []
for i in range(len(test_ts)):
# 预测ARIMA模型的下一个值
arima_pred = arima_result.forecast()[0][0]
# 使用GARCH模型计算方差
var = garch_result.forecast(horizon=1).variance.iloc[-1, 0]
# 计算标准差
std = np.sqrt(var)
# 计算置信区间
conf_int = (arima_pred - 1.96 * std, arima_pred + 1.96 * std)
# 将预测结果添加到列表中
pred_ts.append(arima_pred)
# 将预测结果添加到模型中
arima_result = arima_result.append(pd.Series([test_ts[i]], index=[test_ts.index[i]]))
garch_result.at[test_ts.index[i]] = arima_result.resid[-1]
```
arima_model = sm.tsa.ARIMA(train_data, order=(8, 1, 0)).fit() arima_result = arima_model.fit(disp=False) print(arima_result.summary())检查并修改
这段代码有点问题,因为你用 `arima_model.fit()` 已经进行了拟合,所以不需要再用 `arima_result = arima_model.fit()` 进行一次拟合。可以直接使用 `arima_model.summary()` 来查看 ARIMA 模型的拟合结果。
修改后的代码如下:
```
arima_model = sm.tsa.ARIMA(train_data, order=(8, 1, 0)).fit(disp=False)
print(arima_model.summary())
```
这样就可以查看 ARIMA 模型的拟合结果了。
阅读全文