import pandas as pd import numpy as np df=pd.read_csv('music_message.csv',sep=',',encoding='gbk') df帮忙做一下数据清洗
时间: 2023-11-29 11:04:06 浏览: 106
好的,下面是一些常见的数据清洗操作,你可以根据自己的需求进行选择和修改:
1. 删除重复值:
```python
df.drop_duplicates(inplace=True)
```
2. 缺失值处理:
- 删除缺失值:
```python
df.dropna(inplace=True)
```
- 填充缺失值:
```python
df.fillna(value, inplace=True)
```
- 插值填充缺失值:
```python
df.interpolate(inplace=True)
```
3. 异常值处理:
- 删除异常值:
```python
df = df[(df['column'] >= lower) & (df['column'] <= upper)]
```
- 替换异常值:
```python
df.loc[df['column'] > upper, 'column'] = upper
df.loc[df['column'] < lower, 'column'] = lower
```
4. 字符串清洗:
- 删除空格:
```python
df['column'] = df['column'].str.strip()
```
- 转换为小写:
```python
df['column'] = df['column'].str.lower()
```
5. 数据类型转换:
```python
df['column'] = df['column'].astype('int')
```
这些是常见的数据清洗操作,你可以根据实际情况进行选择和修改。
阅读全文