The size of tensor a (196) must match the size of tensor b (16) at non-singleton dimension 0
时间: 2023-09-24 18:13:50 浏览: 55
这个错误通常是由于两个张量在第0维的大小不匹配导致的。请检查你的代码,确认在对这两个张量进行操作时,它们在第0维的大小是否一致。
如果你需要改变张量的大小,可以使用 PyTorch 中的 `torch.reshape` 或 `torch.view` 函数。例如,可以这样将一个张量 `a` 转换为大小为 (16, 12) 的张量:
```
a = torch.randn(192)
b = a.reshape((16, 12))
```
另外,如果你需要在两个大小不同的张量之间进行操作,可以将其中一个张量重新广播到与另一个张量相同的形状。你可以使用 `torch.broadcast_to` 函数来实现这一点。例如:
```
a = torch.randn(16)
b = torch.randn(1, 16)
b = torch.broadcast_to(b, (16, 16))
c = a + b
```
相关问题
The size of tensor a (256) must match the size of tensor b (196) at non-singleton dimension 3
这个错误提示是由于两个张量的维度不匹配导致的。在这种情况下,张量a的第3个维度的大小为256,而张量b的第3个维度的大小为196,它们不相等,因此会出现错误。
为了解决这个问题,你可以考虑调整张量a和张量b的维度,使它们在第3个维度上具有相同的大小。你可以使用一些张量操作函数来实现这个目标,例如torch.reshape()或torch.transpose()。
下面是一个示例,展示了如何调整张量a和张量b的维度,使它们在第3个维度上具有相同的大小:
```python
import torch
# 假设a和b是两个张量
a = torch.randn(2, 3, 256, 4)
b = torch.randn(2, 3, 196, 4)
# 调整张量a的维度,使其在第3个维度上与张量b的大小相匹配
a = a[:, :, :196, :]
# 或者调整张量b的维度,使其在第3个维度上与张量a的大小相匹配
b = b[:, :, :256, :]
# 现在张量a和张量b在第3个维度上具有相同的大小
```
请注意,具体的调整方法取决于你的数据和需求,你可以根据实际情况选择适合的方法来调整张量的维度。
The size of tensor a (10) must match the size of tensor b (196) at non-singleton dimension 1
这个错误提示意味着在某个操作中,两个张量的形状不兼容。具体地说,两个张量的形状必须在某个非单例维度上匹配才能执行该操作。在你的情况下,张量a的大小为10,而张量b的大小为196,它们在第1个维度上的大小不匹配。
要解决这个问题,你需要检查代码中涉及的这两个张量的形状,并确保它们在所有需要匹配的维度上具有相同的大小。你可以使用`torch.Size()`或者`.size()`方法来获取张量的形状,然后进行比较。你还可以使用PyTorch提供的一些操作来改变张量的形状,例如`.view()`或`.reshape()`方法,以满足您的需求。
阅读全文