用c语言求有向欧拉图和无向欧拉图的欧拉回路
时间: 2024-05-05 21:20:59 浏览: 196
欧拉回路指经过图中每条边恰好一次的回路。欧拉图指存在欧拉回路的图。
对于无向图,判断是否是欧拉图可以使用 Fleury 算法。如果该图联通且每个点的度数都是偶数,则该图是欧拉图。欧拉回路可以使用 Hierholzer 算法求解。
以下是 C 语言实现无向图欧拉回路的代码(假设点编号从0开始):
```c
#include <stdio.h>
#include <stdlib.h>
#define MAXN 1000
int n, m; // n 个点,m 条边
int deg[MAXN]; // 存储每个点的度数
int G[MAXN][MAXN]; // 存储图
int ans[MAXN], ans_cnt; // 存储欧拉回路,ans_cnt 表示回路上的点数
void dfs(int u) {
for (int v = 0; v < n; v++) {
if (G[u][v]) { // 如果存在一条从 u 到 v 的边
G[u][v] = G[v][u] = 0; // 删除该边
dfs(v);
}
}
ans[ans_cnt++] = u; // 将点 u 加入欧拉回路
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u][v] = G[v][u] = 1; // 添加无向边
deg[u]++, deg[v]++; // 维护每个点的度数
}
int start = -1; // 找到起点
for (int i = 0; i < n; i++) {
if (deg[i] % 2 == 1) {
printf("无欧拉回路\n");
return 0;
}
if (deg[i] > 0 && start == -1) {
start = i;
}
}
dfs(start);
if (ans_cnt != m+1) { // 如果回路上的点数不等于边数+1,则不存在欧拉回路
printf("无欧拉回路\n");
} else {
for (int i = ans_cnt-1; i >= 0; i--) {
printf("%d ", ans[i]);
}
}
return 0;
}
```
对于有向图,判断是否是欧拉图需要判断每个点的入度和出度是否相等。欧拉回路的求解可以使用 Hierholzer 算法,与无向图类似。
以下是 C 语言实现有向图欧拉回路的代码(假设点编号从0开始):
```c
#include <stdio.h>
#include <stdlib.h>
#define MAXN 1000
int n, m; // n 个点,m 条边
int indeg[MAXN], outdeg[MAXN]; // 存储每个点的入度和出度
int G[MAXN][MAXN]; // 存储图
int ans[MAXN], ans_cnt; // 存储欧拉回路,ans_cnt 表示回路上的点数
void dfs(int u) {
for (int v = 0; v < n; v++) {
if (G[u][v]) { // 如果存在一条从 u 到 v 的边
G[u][v] = 0; // 删除该边
dfs(v);
}
}
ans[ans_cnt++] = u; // 将点 u 加入欧拉回路
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u][v] = 1; // 添加有向边
outdeg[u]++, indeg[v]++; // 维护每个点的入度和出度
}
int start = -1; // 找到起点
for (int i = 0; i < n; i++) {
if (indeg[i] != outdeg[i]) {
printf("无欧拉回路\n");
return 0;
}
if (outdeg[i] > 0 && start == -1) {
start = i;
}
}
dfs(start);
if (ans_cnt != m+1) { // 如果回路上的点数不等于边数+1,则不存在欧拉回路
printf("无欧拉回路\n");
} else {
for (int i = ans_cnt-1; i >= 0; i--) {
printf("%d ", ans[i]);
}
}
return 0;
}
```
阅读全文