注释代码plt.scatter(x[y== 0, 0], x[y== 0, 1]) plt.scatter(x[y== 1, 0], x[y== 1, 1]) plt.scatter(x[y== 2, 0], x[y== 2, 1])
时间: 2024-05-25 10:18:11 浏览: 89
# 绘制散点图,其中x为样本特征,y为样本标签
# 绘制标签为0的样本的散点图,x[y== 0, 0]表示取出标签为0的样本在第0个特征上的值,x[y== 0, 1]表示取出标签为0的样本在第1个特征上的值
plt.scatter(x[y== 0, 0], x[y== 0, 1])
# 绘制标签为1的样本的散点图,x[y== 1, 0]表示取出标签为1的样本在第0个特征上的值,x[y== 1, 1]表示取出标签为1的样本在第1个特征上的值
plt.scatter(x[y== 1, 0], x[y== 1, 1])
# 绘制标签为2的样本的散点图,x[y== 2, 0]表示取出标签为2的样本在第0个特征上的值,x[y== 2, 1]表示取出标签为2的样本在第1个特征上的值
plt.scatter(x[y== 2, 0], x[y== 2, 1])
相关问题
修改下面代码的错误Ca_feature.remove('描述') col1=Ca_feature plt.figure(figsize=(20,10)) j=1 for col in col1: ax=plt.subplot(4,5,j) ax=plt.scatter(x=range(len(df)),y=df[col],color='red') plt.title(col) j+=1 k=11 for col in col1: ax=plt.subplot(4,5,k) ax=plt.scatter(x=range(len(test)),y=test[col],color='cyan') plt.title(col) k+=1 plt.subplots_adjust(wspace=0.4,hspace=0.3) plt.show()
修改后的代码如下:
```python
Ca_feature.remove('描述')
col1 = Ca_feature
plt.figure(figsize=(20,10))
j = 1
for col in col1:
ax = plt.subplot(4,5,j)
ax = plt.scatter(x=range(len(df)), y=df[col], color='red')
plt.title(col)
j += 1
k = 11
for col in col1:
ax = plt.subplot(4,5,k)
ax = plt.scatter(x=range(len(test)), y=test[col], color='cyan')
plt.title(col)
k += 1
plt.subplots_adjust(wspace=0.4, hspace=0.3)
plt.show()
```
主要修改是将 `Ca_feature.remove('描述')` 放在代码块的第一行,以确保在进行后续操作之前先移除 '描述' 列。同时,将 `j` 和 `k` 的初始值设置为 1 和 11,以便在两个循环中正确设置子图的位置。
plt.scatter(x=data.age[data.target==1], y=data.chol[data.target==1], c="orange"
这是一个使用matplotlib库绘制散点图的例子,其中`data`是一个数据集,`age`是数据集中的一个特征,`chol`是数据集中的另一个特征,`target`是数据集中的目标变量。
这个例子中,我们选择`target`变量为1的样本,以`age`作为x轴,`chol`作为y轴,绘制出散点图,并将散点的颜色设置为橙色。
下面是一个完整的例子:
```python
import matplotlib.pyplot as plt
import pandas as pd
# 读取数据集
data = pd.read_csv("heart.csv")
# 绘制散点图
plt.scatter(x=data.age[data.target==1], y=data.chol[data.target==1], c="orange")
plt.xlabel("age")
plt.ylabel("chol")
plt.show()
```
这个例子中,我们使用了pandas库来读取数据集,并使用matplotlib库来绘制散点图。
阅读全文