batch normalization代码
时间: 2023-04-10 09:04:52 浏览: 169
Batch normalization 是一种常用的神经网络正则化方法,可以加速神经网络的训练过程。以下是一个简单的 batch normalization 的代码实现:
```python
import numpy as np
class BatchNorm:
def __init__(self, gamma, beta, eps=1e-5):
self.gamma = gamma
self.beta = beta
self.eps = eps
self.running_mean = None
self.running_var = None
self.batch_size = None
self.xc = None
self.std = None
self.dgamma = None
self.dbeta = None
def forward(self, x, train=True):
N, D = x.shape
if self.running_mean is None:
self.running_mean = np.zeros(D)
self.running_var = np.zeros(D)
if train:
self.batch_size = N
mu = np.mean(x, axis=0)
xc = x - mu
var = np.mean(xc ** 2, axis=0)
std = np.sqrt(var + self.eps)
xn = xc / std
self.running_mean = 0.9 * self.running_mean + 0.1 * mu
self.running_var = 0.9 * self.running_var + 0.1 * var
self.xc = xc
self.std = std
else:
xc = x - self.running_mean
xn = xc / np.sqrt(self.running_var + self.eps)
out = self.gamma * xn + self.beta
return out
def backward(self, dout):
dxn = dout * self.gamma
dxc = dxn / self.std
dstd = -np.sum(dxn * self.xc, axis=0) / (self.std ** 2)
dvar = 0.5 * dstd / self.std
dxc += (2.0 / self.batch_size) * self.xc * dvar
dmu = np.sum(dxc, axis=0)
dx = dxc - dmu / self.batch_size
self.dgamma = np.sum(dout * xn, axis=0)
self.dbeta = np.sum(dout, axis=0)
return dx
```
这段代码实现了一个 BatchNorm 类,可以在神经网络中使用。在 forward 函数中,首先计算出当前 batch 的均值和方差,然后对输入数据进行标准化,最后乘以 gamma 加上 beta 得到输出。在 backward 函数中,根据链式法则计算出梯度。
阅读全文