matlab;不依赖y值的三维分形表面程序
时间: 2023-12-15 16:04:58 浏览: 71
以下是一个基于Matlab的三维分形表面程序,不依赖于y值:
```matlab
% 定义初始的三个顶点坐标
A = [0, 0, 0];
B = [1, 0, 0];
C = [0, 1, 0];
% 定义迭代次数
n = 4;
% 进行迭代
for i = 1:n
% 分别计算三个新的顶点坐标
D = 0.5 * (A + B);
E = 0.5 * (B + C);
F = 0.5 * (C + A);
% 将新的顶点坐标连接起来形成四个新的三角形
T1 = [A; D; F];
T2 = [D; B; E];
T3 = [F; E; C];
T4 = [D; E; F];
% 将四个新的三角形加入到原有的三角形列表中
triangles = [triangles; T1; T2; T3; T4];
% 更新三个顶点坐标
A = D;
B = E;
C = F;
end
% 画出分形表面
trisurf(triangles(:, 1), triangles(:, 2), triangles(:, 3), 'FaceColor', 'blue', 'EdgeColor', 'none');
axis equal;
```
这个程序使用Sierpinski三角形的方法来生成分形表面。它从一个初始的三角形开始,每次将三角形分成四个更小的三角形,然后将这些新的三角形加入到原有的三角形列表中。最终得到的三角形列表就是分形表面的三角形网格。
相关问题
不依赖y值的三维分形表面程序
以下是一个不依赖于y值的三维分形表面程序示例:
```
#include <cmath>
#include <iostream>
#include <vector>
const int WIDTH = 800;
const int HEIGHT = 800;
struct Point {
float x, y, z;
Point(float x, float y, float z) : x(x), y(y), z(z) {}
};
std::vector<Point> points{{-1, -1, -1}, {-1, 1, -1}, {1, 1, -1}, {1, -1, -1}, {-1, -1, 1}, {-1, 1, 1}, {1, 1, 1}, {1, -1, 1}};
void drawTriangle(Point p1, Point p2, Point p3) {
glBegin(GL_TRIANGLES);
glVertex3f(p1.x, p1.y, p1.z);
glVertex3f(p2.x, p2.y, p2.z);
glVertex3f(p3.x, p3.y, p3.z);
glEnd();
}
void divideTriangle(Point p1, Point p2, Point p3, int depth) {
if (depth == 0) {
drawTriangle(p1, p2, p3);
return;
}
Point p12{(p1.x + p2.x) / 2, (p1.y + p2.y) / 2, (p1.z + p2.z) / 2};
Point p23{(p2.x + p3.x) / 2, (p2.y + p3.y) / 2, (p2.z + p3.z) / 2};
Point p31{(p3.x + p1.x) / 2, (p3.y + p1.y) / 2, (p3.z + p1.z) / 2};
divideTriangle(p1, p12, p31, depth - 1);
divideTriangle(p2, p23, p12, depth - 1);
divideTriangle(p3, p31, p23, depth - 1);
divideTriangle(p12, p23, p31, depth - 1);
}
void display() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0f, static_cast<float>(WIDTH) / HEIGHT, 0.1f, 100.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0f, 0.0f, 5.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
glColor3f(1.0f, 1.0f, 1.0f);
divideTriangle(points[0], points[1], points[2], 4);
divideTriangle(points[0], points[3], points[2], 4);
divideTriangle(points[0], points[4], points[1], 4);
divideTriangle(points[3], points[7], points[2], 4);
divideTriangle(points[4], points[5], points[1], 4);
divideTriangle(points[4], points[7], points[6], 4);
divideTriangle(points[4], points[7], points[3], 4);
divideTriangle(points[1], points[6], points[2], 4);
glFlush();
glutSwapBuffers();
}
void reshape(int width, int height) {
glViewport(0, 0, static_cast<GLsizei>(width), static_cast<GLsizei>(height));
}
int main(int argc, char** argv) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(WIDTH, HEIGHT);
glutCreateWindow("Fractal Surface");
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glutMainLoop();
return 0;
}
```
这个程序使用OpenGL绘制了一个基于Sierpinski三角形的三维分形表面。它使用递归方法将每个三角形分成四个更小的三角形,并在递归达到一定深度时绘制每个三角形。这个方法可以用于创建各种各样的三维分形表面。
matlab;不依赖y值由分形参数控制的的三维分形表面程序
以下是一个不依赖于y值,由分形参数控制的三维分形表面程序:
```
% 设置分形参数
a = 1.5;
b = 1.5;
c = 1.5;
% 设置网格大小
n = 100;
% 初始化网格
x = linspace(-1, 1, n);
y = linspace(-1, 1, n);
[X, Y] = meshgrid(x, y);
Z = zeros(n, n);
% 迭代计算分形表面
for i = 1:10
% 计算随机偏移量
dx = randn(1, 1) * 0.1;
dy = randn(1, 1) * 0.1;
dz = randn(1, 1) * 0.1;
% 计算分形表面
Z = Z + a * sin(b * pi * X + dx) .* cos(c * pi * Y + dy) + dz;
% 缩放分形参数
a = a * 0.9;
b = b * 0.9;
c = c * 0.9;
end
% 绘制分形表面
surf(X, Y, Z);
axis equal;
```
该程序使用三个分形参数a、b、c来控制分形表面的形状。随机偏移量dx、dy、dz用于在每次迭代中引入随机变化。程序迭代10次,每次迭代都会缩小分形参数,以便在每次迭代中产生更细节的结构。最终,程序绘制了一个三维分形表面。
阅读全文
相关推荐















