帮我翻译以下代码 tokenizer: PreTrainedTokenizerBase model: Optional[Any] = None padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 return_tensors: str = "pt"
时间: 2024-04-28 13:23:25 浏览: 225
这段代码定义了一个函数,包含以下几个参数:
- tokenizer:一个预训练的分词器基类。
- model:一个可选参数,表示使用的模型。默认值为 None。
- padding:一个布尔值、字符串或填充策略,表示是否进行填充。默认值为 True。
- max_length:一个可选参数,表示序列的最大长度。默认值为 None。
- pad_to_multiple_of:一个可选参数,表示填充后序列的长度要是多少的倍数。默认值为 None。
- label_pad_token_id:一个整数,表示标签填充时要使用的特殊标记的 ID 值。默认值为 -100。
- return_tensors:一个字符串,表示返回的张量的类型。默认值为 "pt"。
相关问题
帮我翻译以下方法 def __call__(self, features, return_tensors=None): import numpy as np if return_tensors is None: return_tensors = self.return_tensors labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the # same length to return tensors. if labels is not None: max_label_length = max(len(l) for l in labels) padding_side = self.tokenizer.padding_side for feature in features: remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"])) if isinstance(feature["labels"], list): feature["labels"] = ( feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"] ) elif padding_side == "right": feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64) else: feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64) features = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=return_tensors, ) # prepare decoder_input_ids if self.model is not None and hasattr(self.model, "prepare_decoder_input_ids_from_labels"): decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"]) features["decoder_input_ids"] = decoder_input_ids return features
这个方法的作用是将输入的features进行处理,并返回处理后的结果。其中,features是一个字典列表,每个字典表示一个样本的特征。return_tensors是一个可选参数,表示返回的结果是否转换成张量。该方法首先从features中提取出标签labels,并对它们进行填充,使它们的长度与最长的标签长度相同。然后,使用tokenizer对features进行填充,使它们的长度相同。最后,如果模型有prepare_decoder_input_ids_from_labels方法,该方法将使用labels来准备decoder_input_ids,并将其添加到features中返回。
帮我翻译以下代码 def __call__(self, features, return_tensors=None): import numpy as np if return_tensors is None: return_tensors = self.return_tensors labels = [feature["labels"] for feature in features] if "labels" in features[0].keys() else None # We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the # same length to return tensors. if labels is not None: max_label_length = max(len(l) for l in labels) padding_side = self.tokenizer.padding_side for feature in features: remainder = [self.label_pad_token_id] * (max_label_length - len(feature["labels"])) if isinstance(feature["labels"], list): feature["labels"] = ( feature["labels"] + remainder if padding_side == "right" else remainder + feature["labels"] ) elif padding_side == "right": feature["labels"] = np.concatenate([feature["labels"], remainder]).astype(np.int64) else: feature["labels"] = np.concatenate([remainder, feature["labels"]]).astype(np.int64)
这段代码定义了一个函数,函数名为 __call__,包含两个参数:
- features:一个特征列表,其中每个特征是一个字典,包含了模型输入所需的各种信息。
- return_tensors:一个字符串,表示返回的张量的类型,默认值为 None。
函数中首先引入了numpy库,并对 return_tensors 进行了处理。然后,它根据特征列表中是否包含标签信息来确定 labels 的值。如果特征列表中包含标签信息,则需要对标签进行填充以使其长度相同,以便于后面调用 tokenizer.pad 方法。接下来,根据填充的位置,对特征列表中的每个特征的标签进行填充。如果标签是列表形式,则使用加法和列表切片操作进行填充;否则,使用numpy库中的 concatenate 函数进行填充。填充后的标签转换为 int64 类型,并作为返回值返回。
阅读全文