# extract dataset x1_x2_train = data_train[:, :-1] t_train = data_train[:, 2] # x1_x2_test = data_test[:, :-1] t_test = data_test[:, 2] if choice == 1: model = svm_bi.SVM(svm_bi.linear_kernel) elif choice == 2: #model = SVM(polynormal_kernel) model = svm_bi.SVM(svm_bi.gaussian_kernel) #model = svm_bi.SVM(svm_bi.sigmoid_kernel) elif choice == 3: model3 = svm_multi.SVM_Multi() elif choice == 4: from sklearn.svm import SVC model4 = SVC(kernel='sigmoid') else: exit(),上方代码的含义是什么
时间: 2024-04-01 21:38:30 浏览: 49
data_2d_h36m_gt.npz
这段代码的作用是从加载的数据集中提取特征和目标变量,并根据用户的选择初始化SVM模型。首先,它从`data_train`和`data_test`中分别提取出特征矩阵`x1_x2_train`和`x1_x2_test`,以及目标变量向量`t_train`和`t_test`。这些变量将被用于训练和测试SVM模型。接下来,根据用户的选择,它初始化一个SVM模型。如果选择为1,它将使用线性核函数初始化一个二元分类器。如果选择为2,它将使用高斯核函数初始化一个二元分类器。如果选择为3,它将初始化一个多分类器。如果选择为4,它将使用Sigmoid核函数初始化一个二元分类器。如果选择不是1、2、3或4,那么程序将会退出。
阅读全文