def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(16) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(32) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * 8 * 8, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 2)讲解一下这段代码

时间: 2023-03-27 13:02:34 浏览: 69
这段代码是一个卷积神经网络(CNN)的初始化函数,它定义了神经网络的结构。首先定义了一个卷积层(conv1),输入通道数为3,输出通道数为16,卷积核大小为3x3,步长为1,填充为1。接着定义了一个批归一化层(bn1),用于加速训练过程。然后是一个ReLU激活函数(relu1),用于增加网络的非线性性。紧接着是一个最大池化层(pool1),用于降低特征图的大小。接下来的代码与前面类似,定义了第二个卷积层(conv2),批归一化层(bn2),ReLU激活函数(relu2)和最大池化层(pool2)。最后定义了两个全连接层(fc1和fc2),其中fc1的输入大小为32x8x8,输出大小为128,fc2的输入大小为128,输出大小为2。这段代码的作用是定义了一个用于图像分类的CNN模型。
相关问题

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法: 1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。 2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。 3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。 以下是代码的修改建议: 1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。 2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。 3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。 4. 增加正则化:可以使用 L2 正则化来防止过拟合。 修改后的代码如下: ``` import torch.nn.functional as F import torchvision.transforms as transforms class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5, 1024) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(1024, 141) # 数据增强 self.transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) def forward(self, x): x = self.conv1_1(x) x = self.bn1_1(x) x = self.relu1_1(x) x = self.pool1(x) x = self.conv2_1(x) x = self.bn2_1(x) x = self.relu2_1(x) x = self.pool2(x) x = self.conv3_1(x) x = self.bn3_1(x) x = self.relu3_1(x) x = self.pool3(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu4_1(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu4_2(x) x = self.pool4(x) x = self.conv5_1(x) x = self.bn5_1(x) x = self.relu5_1(x) x = self.conv5_2(x) x = self.bn5_2(x) x = self.relu5_2(x) x = self.pool5(x) x = x.view(-1, 512*5*5) x = self.dropout1(x) x = self.fc1(x) x = self.relu6(x) x = self.dropout2(x) x = self.fc2(x) return x ``` 在训练时,可以使用如下代码来进行数据增强: ``` trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=model.transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) ```

class CNNmodel(nn.Module): def __init__(self): super(CNNmodel, self).__init__() self.conv1d = nn.Conv1d(1, 64, kernel_size=2) self.relu = nn.ReLU(inplace=True) self.Linear1 = nn.Linear(64*75, 50) self.Linear2 = nn.Linear(50, 1) def forward(self, x): x = self.conv1d(x) x = self.relu(x) x = x.view(-1) x = self.Linear1(x) x = self.relu(x) x = self.Linear2(x) return x报错

这段代码存在一些问题,导致运行时报错。以下是可能出现的问题及解决方法: 1. `x = x.view(-1)`这一行应该改为`x = x.view(-1, 64*75)`,因为在前面`self.conv1d`的输出通道数为64,而输出的feature map长度为75,需要将其展平后输入全连接层。 2. `self.Linear2 = nn.Linear(50, 1)`中的1代表输出的类别数,如果是二分类问题,应该改为`self.Linear2 = nn.Linear(50, 2)`,并在模型的输出处加上softmax激活函数。 修改后的代码如下: ``` class CNNmodel(nn.Module): def __init__(self): super(CNNmodel, self).__init__() self.conv1d = nn.Conv1d(1, 64, kernel_size=2) self.relu = nn.ReLU(inplace=True) self.Linear1 = nn.Linear(64*75, 50) self.Linear2 = nn.Linear(50, 2) def forward(self, x): x = self.conv1d(x) x = self.relu(x) x = x.view(-1, 64*75) x = self.Linear1(x) x = self.relu(x) x = self.Linear2(x) x = F.softmax(x, dim=1) return x ```

相关推荐

# 构建卷积神经网络结构 # 当前版本为卷积核大小5 * 5的版本 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(5, 16, 3, padding='same') self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 16, 3, padding=1) self.bn2 = nn.BatchNorm2d(16) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) self.bn3 = nn.BatchNorm2d(32) self.conv4 = nn.Conv2d(32, 64, 3, padding=1) self.bn4 = nn.BatchNorm2d(64) self.conv5 = nn.Conv2d(64, 128, 3, padding=1) self.bn5 = nn.BatchNorm2d(128) self.conv6 = nn.Conv2d(128, 128, 3, padding=1) self.bn6 = nn.BatchNorm2d(128) self.conv_t6 = nn.ConvTranspose2d(128, 64, 3, padding=1) self.bn_t6 = nn.BatchNorm2d(64) self.conv_t5 = nn.ConvTranspose2d(64, 32, 3, padding=1) self.bn_t5 = nn.BatchNorm2d(32) self.conv_t4 = nn.ConvTranspose2d(32, 16, 3, padding=1) self.bn_t4 = nn.BatchNorm2d(16) self.conv_t3 = nn.ConvTranspose2d(16, 16, 3, padding=1) self.bn_t3 = nn.BatchNorm2d(16) self.conv_t2 = nn.ConvTranspose2d(16, 8, 3, padding=1) self.bn_t2 = nn.BatchNorm2d(8) self.conv_1 = nn.Conv2d(8, 2, 3, padding='same') self.bn_1 = nn.BatchNorm2d(2) self.tan_h = nn.Tanh() def forward(self, x): x1 = self.tan_h(self.bn1(self.conv1(x))) x2 = self.tan_h(self.bn2(self.conv2(x1)))**2 x3 = self.tan_h(self.bn3(self.conv3(x2)))**2 x4 = self.tan_h(self.bn4(self.conv4(x3)))**2 x5 = self.tan_h(self.bn5(self.conv5(x4)))**2 x6 = self.tan_h(self.bn6(self.conv6(x5)))**2 x_t6 = self.tan_h(self.bn_t6(self.conv_t6(x6)))**2 x_t5 = self.tan_h(self.bn_t5(self.conv_t5(x_t6)))**2 x_t4 = self.tan_h(self.bn_t4(self.conv_t4(x_t5)))**2 x_t3 = self.tan_h(self.bn_t3(self.conv_t3(x_t4))) ** 2 x_t2 = self.tan_h(self.bn_t2(self.conv_t2(x_t3))) ** 2 x_1 = self.tan_h(self.bn_1(self.conv_1(x_t2))) return x_1 # 读取模型 需要提前定义对应的类 model = torch.load("model1.pt") # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.ASGD(model.parameters(), lr=0.01) 详细说明该神经网络的结构,功能以及为什么要选择这个

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

ec616DataSheet

移芯NBIOT 芯片,NB芯片,水表电表芯片,烟感 地磁芯片 超弱信号环境业务能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。