model = paddle.Model(myModel()) model.summary((-1,1,28,28))
时间: 2023-10-04 08:09:33 浏览: 111
这段代码使用PaddlePaddle框架的`Model`类,将`myModel`实例化为一个模型对象,并通过`model.summary((-1,1,28,28))`打印出模型的结构信息。
`summary`方法的输入参数是一个元组(tuple),表示输入数据的形状。这里输入数据的形状为`(-1,1,28,28)`,其中`-1`表示该维度的大小可以根据输入的实际大小自动推断。因为这个模型是用于图像分类任务,所以输入数据的形状是`(batch_size, channel, height, width)`,其中`batch_size`表示一次输入的样本数量,`channel`表示图像的通道数,`height`和`width`表示图像的高和宽。在这个模型中,输入数据的通道数为1,高和宽均为28。
相关问题
#opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) #opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters()) opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters()) #opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())
你给出了四个不同的优化器,包括SGD、Momentum、Adagrad和Adam。这些优化器都是用来优化神经网络模型的参数的。它们的区别在于具体的优化策略和算法不同,比如SGD只是简单地按照学习率调整参数,而Momentum会加入动量项来加速收敛。选择哪个优化器取决于你的具体任务和数据集,需要根据实验结果来选择最优的优化器。
net = LeNet5() paddle.summary(net,(-1,1,img_size,img_size)) from paddle.metric import Accuracy save_dir = "model/lenet_2" epoch = 5 lr = 0.01 weight_decay = 5e-4 batch_size = 64 model = paddle.Model(net) optim = paddle.optimizer.Adam(learning_rate=lr,parameter=model.parameters(),weight_decay=weight_decay) model.prepare(optim,paddle.nn.CrossEntropyloss(),paddle.nn.Accuracy()) model.fit(train_dataset,epochs=epoch,batch_size=batch_size,save_dir=save_dir,verbose=1) best_model_path = "model/lenet_2/final.pdparams" net = LeNet5() model = paddle.Model(net) model.load(best_model_path) model.prepare(optim,paddle.nn.CrossEntropyloss(),Accuracy()) results = model.evaluate(test_dataset,batch_size=batch_size,verbose=1) print(results)在pytorch中如何表示
在 PyTorch 中,上述代码可以表示为:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
train_dataset = # 加载训练数据集
test_dataset = # 加载测试数据集
batch_size = 64
epoch = 5
lr = 0.01
weight_decay = 5e-4
save_dir = "model/lenet_2"
best_model_path = "model/lenet_2/final.pt"
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
# 训练模型
for epoch in range(epoch):
net.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, loss: {running_loss/len(train_loader):.4f}")
torch.save(net.state_dict(), best_model_path)
# 测试模型
net.load_state_dict(torch.load(best_model_path))
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f"Accuracy on test set: {accuracy:.4f}")
```
阅读全文