model = weights['model'] model.float().eval()什么意思
时间: 2024-05-23 19:10:57 浏览: 193
这段代码前面假设已经加载了一个预训练模型的权重参数,其中`weights`是一个包含了模型权重的字典。这里`model = weights['model']`是将该字典中的模型参数赋值给变量`model`。
而后面的`model.float().eval()`则是将模型的数据类型转换为浮点型,然后将模型设置为评估模式。在评估模式下,模型不会更新梯度,因此可以减少内存的使用和加速推理的速度。同时,这也是一种良好的实践,因为在评估模式下,模型的行为更加可预测,不会受到训练时的随机性影响。
相关问题
# Load model google_utils.attempt_download(weights) model = torch.load(weights, map_location=device)['model'].float() # load to FP32 # torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning # model.fuse() model.to(device).eval() if half: model.half() # to FP16
这段代码是用来加载预训练好的模型的。首先会调用 `google_utils.attempt_download(weights)` 来下载模型权重文件,如果已经下载过了就不会再次下载。然后使用 `torch.load` 函数来加载模型,其中 `map_location` 参数用来指定加载到哪个设备上,如 `'cpu'` 或者 `'cuda:0'` 等。接下来将模型转换为浮点数类型,使用 `model.to(device)` 将模型移动到指定设备上并设置为评估模式 `model.eval()`。如果 `half` 参数为真,则将模型转换为半精度浮点数类型。最后返回加载好的模型。
def Grad_Cam(model, image, layer_name): # 获取模型提取全链接之前的特征图 new_model = nn.Sequential(*list(model.children())[:44]) print(new_model) new_model.eval() feature_maps = new_model(image) # 获取模型最后一层卷积层 target_layer = model._modules.get(layer_name) # 将模型最后一层卷积层的输出结果作为反向传播的梯度 gradient = torch.zeros(feature_maps.size()) # 返回一个形状与feature_maps相同全为标量 0 的张量 gradient[:, :, feature_maps.size()[2]//2, feature_maps.size()[3]//2] = 1 target_layer.zero_grad() # 将模型中参数的梯度置为0 feature_maps.backward(gradient=gradient) # 获取模型最后一层卷积层的输出结果和梯度 _, _, H, W = feature_maps.size() output_activations = feature_maps.detach().numpy()[0] gradients = target_layer.weight.grad.detach().numpy() # 计算特征图中每个像素点的权重 weights = np.mean(gradients, axis=(2, 3))[0] cam = np.zeros((H, W), dtype=np.float32) for i, w in enumerate(weights): cam += w * output_activations[i, :, :] # 对权重进行归一化处理 cam = np.maximum(cam, 0) cam = cv2.resize(cam, (1440, 1440)) cam = cam - np.min(cam) cam = cam / np.max(cam) # 将热力图叠加到原图上 heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 image = image.detach().numpy() image = np.transpose(image, (0, 2, 3, 1)) img_CCT = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CCT.png") img_CP = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CP.png") img_CCT = cv2.resize(img_CCT, (1440, 1440)) img_CP = cv2.resize(img_CP, (1440, 1440)) cam_img = heatmap + np.float32(img_CCT[0]) cam_img = cam_img / np.max(cam_img) return np.uint8(255 * cam_img) 上述代码不显示热力图,怎么解决
可能是因为在使用 OpenCV 的 `cv2.imshow()` 函数显示图像时,会因为使用了多线程导致程序崩溃。可以尝试使用 `matplotlib` 库来显示热力图,代码如下:
```python
import matplotlib.pyplot as plt
# 将热力图进行归一化处理
heatmap = cv2.resize(cam, (image.shape[2], image.shape[3]))
heatmap = heatmap - np.min(heatmap)
heatmap = heatmap / np.max(heatmap)
# 将热力图叠加到原图上
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
cam_img = np.float32(heatmap) / 255 + np.transpose(image[0], (1, 2, 0))
cam_img = cam_img / np.max(cam_img)
# 使用 matplotlib 显示热力图
plt.imshow(cam_img)
plt.show()
```
这样就可以在 Jupyter Notebook 或者 Python IDE 中显示热力图了。如果仍然无法显示,可以尝试将 `plt.show()` 替换为 `plt.savefig('heatmap.png')`,将热力图保存为图片进行查看。
阅读全文