x = torch.cat((x_s, x_t), dim=0)
时间: 2024-06-04 14:06:29 浏览: 122
这行代码使用了 PyTorch 中的 `torch.cat()` 函数,它用于将多个张量(tensor)沿着指定的维度进行拼接(concatenate)。在这里,`x_s` 和 `x_t` 是两个张量(tensor),`dim=0` 表示沿着第0维(即行)进行拼接。因此,这行代码的作用是将 `x_s` 和 `x_t` 沿着行方向拼接成一个新的张量 `x`。
相关问题
x_cat = torch.cat(x_shift, 1) # 在dim = 1 维度上进行拼接 x_cat = torch.narrow(x_cat, 2, self.pad, H) # 切片[self.pad,self.pad+H] x_s = torch.narrow(x_cat, 3, self.pad, W) # H=W=14 x_s = x_s.reshape(B, C, H * W).contiguous() x_shift_r = x_s.transpose(1, 2) x = self.fc1(x_shift_r) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x)
这部分代码进行了一系列的操作,包括拼接、切片、重塑、转置和神经网络模块的调用。
首先,`torch.cat`函数对列表`x_shift`中的张量进行拼接操作,拼接的维度是第1维度。结果是一个形状为`(B, C_total, H, W)`的张量,其中`C_total`表示所有窗口移动后的张量在通道维度上的总数。
然后,`torch.narrow`函数对拼接后的张量`x_cat`进行切片操作,切片的维度是第2维度。切片范围是从`self.pad`到`self.pad+H`,得到一个形状为`(B, C_total, H, W)`的张量。这样做是为了去掉填充部分,保留原始输入的区域。
接下来,通过重塑操作`x_s.reshape(B, C, H * W)`将张量`x_s`变形为形状为`(B, C, H * W)`的连续内存张量。然后使用`contiguous()`函数确保张量是连续内存布局。
随后,使用`x_s.transpose(1, 2)`将张量`x_s`进行转置操作,交换第1维度和第2维度。结果是一个形状为`(B, H * W, C)`的张量,其中C表示通道数。
然后,将转置后的张量输入到全连接层`self.fc1`中进行计算,得到一个形状为`(B, H * W, D)`的张量。这里的D表示全连接层的输出维度。
接着,将全连接层的输出张量输入到神经网络模块`self.dwconv`中进行深度可分离卷积操作。`self.dwconv`根据输入张量的形状和参数进行卷积计算,得到一个形状为`(B, D, H, W)`的张量。
然后,通过激活函数`self.act`对卷积结果进行激活操作。
最后,通过`self.drop`对激活后的张量进行丢弃操作,即随机将部分元素设置为0,以减少过拟合的可能性。最终得到处理后的张量作为输出。
def forward(self, *inputs): (x,) = inputs x_paths = [] for conv in self.convolution_paths: x_paths.append(conv(x)) x_residual = torch.cat(x_paths, dim=1) if self.use_pyramid_pooling: x_pool = self.pyramid_pooling(x) x_residual = torch.cat([x_residual, x_pool], dim=1) x_residual = self.aggregation(x_residual) if self.out_channels != self.in_channels: x = self.projection(x) x = x + x_residual return x网络计算过程
该模块的 forward 方法接收一个输入 x,并通过 3 个卷积路径分别对输入进行卷积,将卷积的结果拼接一个张量 x_residual。如果 use_pyramid_pool 为 True,则对输入进行 spatio-temporal pyramid pooling 操作,并将池化的结果与 x_residual 拼接起来。最后,将拼接后的张量 x_residual 通过一个 1x1x1 卷积层进行特征聚合,并将聚合的结果与输入张量 x 相加,得到最终输出。
如果输入和输出通道数不同,则通过投影层将输入 x 的通道数调整为 out_channels。
阅读全文
相关推荐















