CV_FINAL在那个文件中定义的

时间: 2024-03-27 19:41:25 浏览: 13
CV_FINAL是OpenCV库中的一个宏定义,它在头文件core/cvdef.h中被定义。在该文件中,CV_FINAL被定义为一个关键字,用于将类或结构体标记为最终的,即不能被继承。具体定义如下: ``` #ifndef CV_FINAL # if defined(__cplusplus) && (__cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800)) # define CV_FINAL final # else # define CV_FINAL # endif #endif ``` 这段代码首先检查编译器是否支持C++11及以上版本,如果支持,则将CV_FINAL定义为C++11的关键字"final",否则将其定义为空。在支持C++11及以上版本的编译器中,将类或结构体声明为final可以防止其他类继承它,以确保其不会被修改或扩展。
相关问题

def cartoonize(load_folder, save_folder, model_path): input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) network_out = network.unet_generator(input_photo) final_out = guided_filter.guided_filter(input_photo, network_out, r=1, eps=5e-3) all_vars = tf.trainable_variables() gene_vars = [var for var in all_vars if 'generator' in var.name] saver = tf.train.Saver(var_list=gene_vars) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver.restore(sess, tf.train.latest_checkpoint(model_path)) name_list = os.listdir(load_folder) for name in tqdm(name_list): try: load_path = os.path.join(load_folder, name) save_path = os.path.join(save_folder, name) image = cv2.imread(load_path) image = resize_crop(image) batch_image = image.astype(np.float32)/127.5 - 1 batch_image = np.expand_dims(batch_image, axis=0) output = sess.run(final_out, feed_dict={input_photo: batch_image}) output = (np.squeeze(output)+1)*127.5 output = np.clip(output, 0, 255).astype(np.uint8) cv2.imwrite(save_path, output) except: print('cartoonize {} failed'.format(load_path))

这是一个用于将图像转换为卡通风格的函数。它使用了一个基于UNet的生成器网络来实现转换。函数的输入参数包括加载图像的文件夹路径load_folder,保存结果的文件夹路径save_folder,以及模型的路径model_path。 函数首先创建了一个占位符input_photo,用于接收输入图像。然后使用UNet生成器网络对输入图像进行转换,得到网络的输出network_out。接下来,使用guided_filter对输入图像和网络输出进行引导滤波,得到最终的输出final_out。 函数使用tf.trainable_variables()获取所有可训练的变量,并通过筛选将属于生成器网络的变量gene_vars提取出来。然后创建一个Saver对象,用于保存和恢复模型时只操作生成器网络的变量。 接下来,创建一个tf.Session,并进行全局变量的初始化。然后通过saver.restore()方法恢复生成器网络的权重,这里使用了最新的checkpoint。 接下来,函数列举了加载文件夹中的所有图像文件,并使用循环对每个图像进行卡通化处理。首先读取图像,并使用之前定义的resize_crop函数对图像进行尺寸调整和裁剪。然后将图像归一化为[-1, 1]的范围,并在第0维上扩展一个维度,以适应网络输入的要求。接下来,通过sess.run()方法运行最终输出final_out,将输入图像传入input_photo的占位符中。得到的输出经过反归一化处理,再进行像素值的裁剪和类型转换,并使用cv2.imwrite()保存结果图像。 最后,函数通过try-except语句来处理异常情况,如果处理某个图像失败,则打印出错误信息。 总之,这个函数可以将指定文件夹中的图像转换为卡通风格,并保存到指定文件夹中。

#ifdef _DRAWIMG cv::imwrite(packagePath + "/images/detect.jpg", canvas); #endif // //------------------------------------策略计算 for (int i = 0; i < 7; i++) { cnt[i] = std::count(detectData.final_classId.begin(), detectData.final_classId.end(), i); } for(int i = 0;i < 7;i++) { cout << color[i] << " have " << cnt[i] << endl; } strategy();

这段代码中,首先判断了是否定义了宏 `_DRAWIMG`,如果定义了,就会将 `canvas` 保存为 `detect.jpg` 图像文件。接着,通过 `std::count` 函数计算了 `detectData.final_classId` 中每个类别出现的次数,并将结果保存在 `cnt` 数组中。最后,调用了 `strategy` 函数,进行策略计算。 其中,`std::count` 函数的作用是计算一个序列中特定元素的数量,它的参数包括一个序列的起始迭代器和结束迭代器,以及要计数的元素值。在这段代码中,`detectData.final_classId` 序列是一个存储物体类别编号的向量,因此可以用 `std::count` 函数统计每个类别出现的次数。 `strategy` 函数则是进行策略计算的核心函数,但这段代码没有给出具体的实现,需要根据具体应用场景进行实现。

相关推荐

最新推荐

recommend-type

深度卷积神经网络在计算机视觉中的应用研究综述_卢宏涛.pdf

然后综述了基于深度学习的卷积神经网络模型在图像分类、物体检测、姿态估计、图像分割和人脸识别等多个计算机视觉应用领域中的研究现状和发展趋势,主要从典型的网络结构的构建、训练方法和性能表现3个方面进行介绍。...
recommend-type

OpenCV中的cv::Mat函数将数据写入txt文件

主要介绍了OpenCVcv::Mat中的数据按行列写入txt文件中,需要的朋友可以参考下
recommend-type

OpenCV cv.Mat与.txt文件数据的读写操作

主要介绍了OpenCV cv.Mat 与 .txt 文件数据的读写操作,现在分享给大家,也给大家做个参考
recommend-type

计算机视觉检测中自动调焦算法的研究

为了提高计算机视觉检测系统的精度与效率,对几种典型的自动调焦算法进行详细对比与分析,提出一种改进的新型复合式自动调焦算法:首先利用灰度变化率和函数分段线性插值实现函数大范围快速粗调焦;再利用梯度向量...
recommend-type

解决python cv2.imread 读取中文路径的图片返回为None的问题

主要介绍了解决python cv2.imread 读取中文路径的图片返回为None的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。