分支限界法求解0/1背包问题算法
时间: 2023-11-06 15:46:01 浏览: 112
LFKNAP_算法_
1. 将问题分解为子问题:对于每一个物品,可以选择放入背包或者不放入背包,因此可以将问题分解为子问题:对于前i个物品,背包剩余容量为j时,能够获得的最大价值为多少。
2. 确定状态空间:背包剩余容量和前i个物品。
3. 确定状态转移函数:设f(i,j)为前i个物品,背包剩余容量为j时能够获得的最大价值,则状态转移函数为:
f(i,j) = max{f(i-1,j), f(i-1,j-w[i])+v[i]}
其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
4. 确定边界条件:当i=0或j=0时,f(i,j)=0。
5. 求解最优解:最终的最优解为f(n,C),其中n为物品总数,C为背包容量。
6. 回溯求解解集:可以通过回溯法得到获得最大价值时所选取的物品编号。
算法的时间复杂度为O(nC),其中n为物品总数,C为背包容量。
阅读全文