伪代码求最大连续子数时间复杂度nlogn
时间: 2024-04-05 11:12:48 浏览: 109
最大连续子串问题
以下是求最大连续子数的伪代码,时间复杂度为nlogn:
```
function maxSubArray(arr, low, high):
if low == high:
return (low, high, arr[low])
mid = (low + high) // 2
leftLow, leftHigh, leftSum = maxSubArray(arr, low, mid)
rightLow, rightHigh, rightSum = maxSubArray(arr, mid+1, high)
crossLow, crossHigh, crossSum = maxCrossingSubArray(arr, low, mid, high)
if leftSum >= rightSum and leftSum >= crossSum:
return (leftLow, leftHigh, leftSum)
elif rightSum >= leftSum and rightSum >= crossSum:
return (rightLow, rightHigh, rightSum)
else:
return (crossLow, crossHigh, crossSum)
function maxCrossingSubArray(arr, low, mid, high):
leftSum = float('-inf')
sum = 0
for i in range(mid, low-1, -1):
sum += arr[i]
if sum > leftSum:
leftSum = sum
maxLeft = i
rightSum = float('-inf')
sum = 0
for i in range(mid+1, high+1):
sum += arr[i]
if sum > rightSum:
rightSum = sum
maxRight = i
return (maxLeft, maxRight, leftSum+rightSum)
```
该算法的时间复杂度为nlogn,因为它使用了分治策略,将问题分解为更小的子问题并递归求解。在每个递归层次中,算法将数组分成两个子数组,并在O(n)的时间内找到跨越中点的最大子数组。因此,该算法的时间复杂度为nlogn。
阅读全文