特征金字塔网络python代码
时间: 2023-09-12 21:10:38 浏览: 139
特征金字塔网络(Feature Pyramid Network,FPN)是一种用于解决目标检测中物体尺度变化问题的网络结构。以下是使用Python和PyTorch实现FPN的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class FPN(nn.Module):
def __init__(self, num_channels):
super(FPN, self).__init__()
# Bottom-up layers
self.conv1 = nn.Conv2d(3, num_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
# Top-down layers
self.conv5 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.conv7 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
# Lateral layers
self.lateral_conv1 = nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0)
self.lateral_conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0)
self.lateral_conv3 = nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0)
# Smooth layers
self.smooth_conv1 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.smooth_conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
self.smooth_conv3 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
# Bottom-up pathway
c1 = F.relu(self.conv1(x))
c2 = F.relu(self.conv2(c1))
c3 = F.relu(self.conv3(c2))
c4 = F.relu(self.conv4(c3))
# Top-down pathway
p5 = F.relu(self.conv5(c4))
p4 = F.relu(self.conv6(p5) + self.lateral_conv1(c4))
p3 = F.relu(self.conv7(p4) + self.lateral_conv2(c3))
p2 = F.relu(self.lateral_conv3(c2))
# Smooth
p4 = F.relu(self.smooth_conv1(p4))
p3 = F.relu(self.smooth_conv2(p3))
p2 = F.relu(self.smooth_conv3(p2))
return p2, p3, p4, p5
```
这是一个简单的FPN实现,其中包含两个路径:自下而上的路径和自上而下的路径。自下而上的路径生成一组具有不同尺度的特征图,自上而下的路径将这些特征图进行上采样和融合,生成一组具有更好的尺度不变性的特征图。这些特征图最终被送到目标检测网络中进行检测。
阅读全文