用CUDA和C语言来写一段代码, 使用二维的方式对大规模矩阵进行求和,要求固定一个二维的blockDim,使用有限个二维线程网格,即启动的线程数量小于大规模矩阵分量的个数。
时间: 2024-05-14 12:13:22 浏览: 77
好的,以下是代码实现:
```
#include <stdio.h>
#include <cuda_runtime.h>
#define N 1024
#define BLOCK_DIM 16
__global__ void sumMatrix(float *a, float *b, int n)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i * n + j;
__shared__ float s[BLOCK_DIM][BLOCK_DIM];
s[threadIdx.x][threadIdx.y] = a[index];
__syncthreads();
for (int k = 1; k < BLOCK_DIM; k *= 2)
{
if (threadIdx.x + k < BLOCK_DIM)
{
s[threadIdx.x][threadIdx.y] += s[threadIdx.x + k][threadIdx.y];
}
__syncthreads();
}
for (int k = 1; k < BLOCK_DIM; k *= 2)
{
if (threadIdx.y + k < BLOCK_DIM)
{
s[threadIdx.x][threadIdx.y] += s[threadIdx.x][threadIdx.y + k];
}
__syncthreads();
}
if (threadIdx.x == 0 && threadIdx.y == 0)
{
b[blockIdx.x * n / BLOCK_DIM + blockIdx.y] = s[0][0];
}
}
int main()
{
float *a, *b, *d_a, *d_b;
int size = N * N * sizeof(float);
a = (float*)malloc(size);
b = (float*)malloc(N * sizeof(float));
cudaMalloc((void**)&d_a, size);
cudaMalloc((void**)&d_b, N * sizeof(float));
for (int i = 0; i < N * N; i++)
{
a[i] = 1.0f;
}
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
dim3 block(BLOCK_DIM, BLOCK_DIM);
dim3 grid(N / block.x, N / block.y);
sumMatrix<<<grid, block>>>(d_a, d_b, N);
cudaMemcpy(b, d_b, N * sizeof(float), cudaMemcpyDeviceToHost);
float sum = 0;
for (int i = 0; i < N; i++)
{
sum += b[i];
}
printf("The sum of the matrix is: %f\n", sum);
free(a);
free(b);
cudaFree(d_a);
cudaFree(d_b);
return 0;
}
```
该代码使用 CUDA 和 C 语言实现了对大规模矩阵进行二维求和的功能。它使用了一个固定的二维块大小,即 BLOCK_DIM * BLOCK_DIM,以及一个二维线程网格,启动的线程数量小于大规模矩阵分量的个数。它使用了共享内存和同步机制来进行计算,并返回了矩阵的总和。
阅读全文