torch.nn.Linear怎么用
时间: 2023-05-30 14:07:28 浏览: 117
torch.nn.Linear是PyTorch中的一个类,用于定义线性变换的层,可以将输入数据进行线性变换。其使用方法如下:
1. 导入类和PyTorch库:
```
import torch
import torch.nn as nn
```
2. 定义输入和输出的维度:
```
input_size = 784 # 输入数据的维度
output_size = 10 # 输出数据的维度
```
3. 创建一个线性变换层:
```
linear = nn.Linear(input_size, output_size)
```
4. 输入数据进行线性变换:
```
input_data = torch.randn(1, input_size)
output = linear(input_data)
```
在上述例子中,我们定义了一个输入维度为784,输出维度为10的线性变换层,然后输入数据进行线性变换,输出结果为1行10列的张量。
相关问题
self.fc = torch.nn.Sequential( torch.nn.Linear(320, 50), torch.nn.Linear(50, 10), ) 什么意思,参数怎么变化的
回答: self.fc = torch.nn.Sequential(
torch.nn.Linear(320, 50),
torch.nn.Linear(50, 10),
) 是一个神经网络模型的定义,其中使用了torch.nn.Sequential类来构建一个序列模型。\[1\]在这个模型中,有两个线性层(torch.nn.Linear),分别是torch.nn.Linear(320, 50)和torch.nn.Linear(50, 10)。这两个线性层分别完成从输入层到隐藏层的线性变换和从隐藏层到输出层的线性变换。其中,(320, 50)表示输入层的维度为320,隐藏层的维度为50;(50, 10)表示隐藏层的维度为50,输出层的维度为10。这样的定义意味着输入层有320个神经元,隐藏层有50个神经元,输出层有10个神经元。这些参数的变化是根据具体的问题和数据来确定的。
#### 引用[.reference_title]
- *1* *2* *3* [PyTorch 笔记(16)— torch.nn.Sequential、torch.nn.Linear、torch.nn.RelU](https://blog.csdn.net/wohu1104/article/details/107646744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
features_list = list(vgg19.features.children()) self.conv2_2 = torch.nn.Sequential(*features_list[:13]) self.conv3_4 = torch.nn.Sequential(*features_list[13:26]) self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]) self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]) self.tail_layer = features_list[-1] self.fc_layers = list(vgg19.classifier.children())[:-2] self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)) self.extract_0 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1) ) self.extract_1 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1) )self.extract_2 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.extract_3 = torch.nn.Sequential( torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.fc0 = torch.nn.Linear(196, 1, bias=True) self.fc1 = torch.nn.Linear(196, 1, bias=True) self.fc2 = torch.nn.Linear(196, 1, bias=True) self.fc3 = torch.nn.Linear(196, 1, bias=True) self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True) self.bn1 = torch.nn.BatchNorm1d(k) self.bn2 = torch.nn.BatchNorm1d(k) weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)
这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。
具体来说,代码中的各个部分的功能如下:
- `features_list = list(vgg19.features.children())`:获取 VGG19 模型的所有卷积层。
- `self.conv2_2 = torch.nn.Sequential(*features_list[:13])`:将前 13 层卷积层作为 conv2_2 层。
- `self.conv3_4 = torch.nn.Sequential(*features_list[13:26])`:将第 14 层到第 26 层卷积层作为 conv3_4 层。
- `self.conv4_4 = torch.nn.Sequential(*features_list[26: 39])`:将第 27 层到第 39 层卷积层作为 conv4_4 层。
- `self.conv5_4 = torch.nn.Sequential(*features_list[39:-1])`:将第 40 层到倒数第二层卷积层作为 conv5_4 层。
- `self.tail_layer = features_list[-1]`:将最后一层卷积层作为尾部层。
- `self.fc_layers = list(vgg19.classifier.children())[:-2]`:获取 VGG19 模型的所有全连接层,但不包括最后两层。
- `self.fc_layers = torch.nn.Sequential(*list(self.fc_layers))`:将所有全连接层组成一个新的连续的全连接层。
- `self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1))`:将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1))`:将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。
- `self.fc0 = torch.nn.Linear(196, 1, bias=True)`:定义一个输入为 196 的全连接层,用于分类。
- `self.fc1 = torch.nn.Linear(196, 1, bias=True)`:定义第二个输入为 196 的全连接层,用于分类。
- `self.fc2 = torch.nn.Linear(196, 1, bias=True)`:定义第三个输入为 196 的全连接层,用于分类。
- `self.fc3 = torch.nn.Linear(196, 1, bias=True)`:定义第四个输入为 196 的全连接层,用于分类。
- `self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True)`:定义一个输入为 4096 的全连接层,用于分类。
- `self.bn1 = torch.nn.BatchNorm1d(k)`:定义一个 Batch Normalization 层,用于归一化数据。
- `self.bn2 = torch.nn.BatchNorm1d(k)`:定义第二个 Batch Normalization 层,用于归一化数据。
- `weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)`:对所有全连接层进行权重初始化,以提高模型的性能。
阅读全文