ostream& operator<<(ostream& output,Complex& a){ output<<a.real<<"+"<<a.imag<<"i"<<endl; return output; }
时间: 2024-04-28 13:20:44 浏览: 45
这是一个重载了 << 运算符的函数,用于将 Complex 类型的对象以特定格式输出到流中。其中 ostream& 代表返回值为输出流的引用,Complex& a 代表传入的 Complex 类型的引用参数。该函数将实部和虚部输出到流中,并在虚部后添加了一个小写字母 i 表示虚数单位。最后返回输出流的引用。
相关问题
1.定义一个复数类Complex,重载前置自增“++”运算符及后置自增“++”运算符,使之能用于复数的自增运算。 注:复数的自增是让复数的实部和虚部同时增加1.主函数示例如下: #include <iostream> using namespace std; /*********在begin和end之间填入代码,实现complex类的定义,重载前置++运算符和重载后置++运算符及display()函数********/ /***********begin*************/ void Complex::display() { if(real==0) { if(imag>0) cout<<imag<<"i"; else if(imag==0) cout<<real; else cout<<imag<<"i"; } else { if(imag>0) cout<<real<<"+"<<imag<<"i"; else if(imag==0) cout<<real; else cout<<real<<imag<<"i"; } } /***********end************/ int main() { Complex c1,c2; cin>>c1.real>>c1.imag; c1.display(); cout<<endl; ++c1; c2=c1++; c2.display(); cout<<endl; c1.display(); } 2.已知矩阵为2行3列,重载流插入运算符“<<”和流提取运算符">>",使之能完成矩阵的输入和输出。 主函数示例如下: #include <iostream> using namespace std; //请在begin和end间完成Matrix类的编写,重载>>及<<运算符,建议重载为友元函数 /*********begin**********/ /*********end*********/ int main() { Matrix m1; cin>>m1; cout<<"output matrix"<<endl; cout<<m1; }
下面是两个问题的代码实现:
1. 定义一个复数类Complex,重载前置自增“++”运算符及后置自增“++”运算符,使之能用于复数的自增运算。
```c++
#include <iostream>
using namespace std;
class Complex {
private:
double real, imag;
public:
Complex(double r = 0, double i = 0) : real(r), imag(i) {}
// 前置自增
Complex& operator++() {
real++;
imag++;
return *this;
}
// 后置自增
Complex operator++(int) {
Complex temp(*this);
real++;
imag++;
return temp;
}
void display() {
if (real == 0) {
if (imag > 0)
cout << imag << "i";
else if (imag == 0)
cout << real;
else
cout << imag << "i";
}
else {
if (imag > 0)
cout << real << "+" << imag << "i";
else if (imag == 0)
cout << real;
else
cout << real << imag << "i";
}
}
};
int main() {
Complex c1, c2;
cin >> c1.real >> c1.imag;
c1.display();
cout << endl;
++c1;
c2 = c1++;
c2.display();
cout << endl;
c1.display();
return 0;
}
```
在上面的代码中,我们重载了前置自增和后置自增运算符,并定义了一个display()函数,用于输出复数对象的值。在主函数中,我们创建了两个复数对象,对它们进行了自增运算,并输出了结果。
2. 已知矩阵为2行3列,重载流插入运算符“<<”和流提取运算符“>>”,使之能完成矩阵的输入和输出。
```c++
#include <iostream>
using namespace std;
class Matrix {
private:
int data[2][3];
public:
friend istream& operator>>(istream& is, Matrix& m) {
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
is >> m.data[i][j];
}
}
return is;
}
friend ostream& operator<<(ostream& os, const Matrix& m) {
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
os << m.data[i][j] << " ";
}
os << endl;
}
return os;
}
};
int main() {
Matrix m1;
cin >> m1;
cout << "output matrix" << endl;
cout << m1;
return 0;
}
```
在上面的代码中,我们定义了一个Matrix类,其中包含了一个2行3列的矩阵。我们重载了流插入运算符“>>”和流提取运算符“<<”,并实现了矩阵的输入和输出。在主函数中,我们创建了一个Matrix对象,对它进行了输入,并输出了结果。
1. Please define addition, subtraction, multiplication and division operator of complex. Write a program to realize + - * / operator overloading. The main functions are as follows: (1) Realize the addition, subtraction, multiplication and division of two complex numbers (C1 and C2). (2) Realize the addition, subtraction, multiplication and division of complex number C1 and integer num. (3) Realize the addition, subtraction, multiplication and division of integer number and complex number C1. Input format: Please write the input format here. For example: 1.0 2.0 3.0 4.0 5
.0 6.0 (complex numbers C1=1.0+2.0i, C2=3.0+4.0i, integer num=5)
Output format: Please write the output format here. For example: 1.0+2.0i + 3.0+4.0i = 4.0+6.0i
Sure, I'd be happy to help you with that! Here's an example program in C++ that overloads the +, -, *, and / operators for complex numbers:
```cpp
#include <iostream>
using namespace std;
class Complex {
double real, imag;
public:
Complex(double r = 0, double i = 0) {
real = r;
imag = i;
}
Complex operator + (const Complex& c) const {
return Complex(real + c.real, imag + c.imag);
}
Complex operator - (const Complex& c) const {
return Complex(real - c.real, imag - c.imag);
}
Complex operator * (const Complex& c) const {
return Complex(real*c.real - imag*c.imag, real*c.imag + imag*c.real);
}
Complex operator / (const Complex& c) const {
double r = c.real*c.real + c.imag*c.imag;
return Complex((real*c.real + imag*c.imag) / r, (imag*c.real - real*c.imag) / r);
}
Complex operator + (const int num) const {
return Complex(real + num, imag);
}
Complex operator - (const int num) const {
return Complex(real - num, imag);
}
Complex operator * (const int num) const {
return Complex(real*num, imag*num);
}
Complex operator / (const int num) const {
return Complex(real/num, imag/num);
}
friend ostream& operator<<(ostream& os, const Complex& c);
};
ostream& operator<<(ostream& os, const Complex& c) {
os << c.real << "+" << c.imag << "i";
return os;
}
int main() {
Complex C1(1.0, 2.0);
Complex C2(3.0, 4.0);
int num = 5;
// Addition
cout << C1 << " + " << C2 << " = " << C1 + C2 << endl;
cout << C1 << " + " << num << " = " << C1 + num << endl;
cout << num << " + " << C1 << " = " << num + C1 << endl;
// Subtraction
cout << C1 << " - " << C2 << " = " << C1 - C2 << endl;
cout << C1 << " - " << num << " = " << C1 - num << endl;
cout << num << " - " << C1 << " = " << num - C1 << endl;
// Multiplication
cout << C1 << " * " << C2 << " = " << C1 * C2 << endl;
cout << C1 << " * " << num << " = " << C1 * num << endl;
cout << num << " * " << C1 << " = " << num * C1 << endl;
// Division
cout << C1 << " / " << C2 << " = " << C1 / C2 << endl;
cout << C1 << " / " << num << " = " << C1 / num << endl;
cout << num << " / " << C1 << " = undefined" << endl; // division by complex number is undefined
return 0;
}
```
In this program, we define a class `Complex` to represent complex numbers. We overload the +, -, *, and / operators both for complex numbers and for an integer. We also define a `friend` function to overload the << operator to print complex numbers in a readable format.
To use this program, you can simply copy and paste the code into a C++ compiler, and run it. You will be prompted to enter the complex numbers and integer as input, and the program will output the results of the addition, subtraction, multiplication, and division operations.
I hope this helps! Let me know if you have any further questions.
阅读全文