p0 = torch.sin(2.*np.pi*x).unsqueeze(1)是什么意思
时间: 2023-05-26 17:06:19 浏览: 130
这行代码是在将numpy ndarray类型的变量x以及其前面的2*pi常数作为参数传入torch.sin()函数中,并得到一个张量(tensor)类型的结果。最后,使用unsqueeze(1)方法将此张量在第1个维度上进行扩展,使得该张量的形状为(N,1),其中N为x的长度,表示将每个标量值转换成一个长度为1的向量,这样做的目的是为了适应特定的神经网络模型的输入要求,通常要求输入张量的第2个维度就是输入数据的属性数目,这个1表示每个数据只有1个属性。整体来看,p0的结果是一个N行1列的张量,可以作为神经网络的输入。
相关问题
def get_samples_ini(batch_size=100): x = torch.rand(batch_size) p0 = torch.sin(2. * np.pi * x).unsqueeze(1) return torch.stack([ x, torch.zeros(batch_size) # t=0 ], axis=-1), p0
这段代码实现了一个函数,函数名为get_samples_ini,输入参数为batch_size,默认为100。在函数内部,首先使用torch.rand生成了一个大小为batch_size的随机数x;然后使用torch.sin和np.pi对x进行一些数学运算,生成另一个张量p0;最后,将x和一个大小为(batch_size,1)的全零张量torch.zeros进行torch.stack操作,返回一个大小为(2,batch_size)的张量。
修改下列模块代码,使其能够对三维模型的直线特征进行提取:class FaceKernelCorrelation(nn.Module): def __init__(self, num_kernel=64, sigma=0.2): super(FaceKernelCorrelation, self).__init__() self.num_kernel = num_kernel self.sigma = sigma self.weight_alpha = Parameter(torch.rand(1, num_kernel, 4) * np.pi) self.weight_beta = Parameter(torch.rand(1, num_kernel, 4) * 2 * np.pi) self.bn = nn.BatchNorm1d(num_kernel) self.relu = nn.ReLU() def forward(self, normals, neighbor_index): b, _, n = normals.size() center = normals.unsqueeze(2).expand(-1, -1, self.num_kernel, -1).unsqueeze(4) neighbor = torch.gather(normals.unsqueeze(3).expand(-1, -1, -1, 3), 2, neighbor_index.unsqueeze(1).expand(-1, 3, -1, -1)) neighbor = neighbor.unsqueeze(2).expand(-1, -1, self.num_kernel, -1, -1) fea = torch.cat([center, neighbor], 4) fea = fea.unsqueeze(5).expand(-1, -1, -1, -1, -1, 4) weight = torch.cat([torch.sin(self.weight_alpha) * torch.cos(self.weight_beta), torch.sin(self.weight_alpha) * torch.sin(self.weight_beta), torch.cos(self.weight_alpha)], 0) weight = weight.unsqueeze(0).expand(b, -1, -1, -1) weight = weight.unsqueeze(3).expand(-1, -1, -1, n, -1) weight = weight.unsqueeze(4).expand(-1, -1, -1, -1, 4, -1) dist = torch.sum((fea - weight)**2, 1) fea = torch.sum(torch.sum(np.e**(dist / (-2 * self.sigma**2)), 4), 3) / 16 return self.relu(self.bn(fea))
修改后的代码如下:
```python
class FaceKernelCorrelation(nn.Module):
def __init__(self, num_kernel=64, sigma=0.2):
super(FaceKernelCorrelation, self).__init__()
self.num_kernel = num_kernel
self.sigma = sigma
self.weight_alpha = Parameter(torch.rand(1, num_kernel, 6) * np.pi)
self.weight_beta = Parameter(torch.rand(1, num_kernel, 6) * 2 * np.pi)
self.bn = nn.BatchNorm1d(num_kernel)
self.relu = nn.ReLU()
def forward(self, vertices, neighbor_index):
b, _, n = vertices.size()
center = vertices.unsqueeze(2).expand(-1, -1, self.num_kernel, -1).unsqueeze(4)
neighbor = torch.gather(vertices.unsqueeze(3).expand(-1, -1, -1, 3),
2, neighbor_index.unsqueeze(1).expand(-1, 3, -1, -1))
neighbor = neighbor.unsqueeze(2).expand(-1, -1, self.num_kernel, -1, -1)
# 计算直线特征
line = neighbor - center
length = torch.sqrt(torch.sum(line**2, dim=-1, keepdim=True))
direction = line / (length + 1e-8)
fea = torch.cat([center, direction, length], dim=4)
fea = fea.unsqueeze(5).expand(-1, -1, -1, -1, -1, 6)
weight = torch.cat([torch.sin(self.weight_alpha) * torch.cos(self.weight_beta),
torch.sin(self.weight_alpha) * torch.sin(self.weight_beta),
torch.cos(self.weight_alpha)], 0)
weight = weight.unsqueeze(0).expand(b, -1, -1, -1)
weight = weight.unsqueeze(3).expand(-1, -1, -1, n, -1)
weight = weight.unsqueeze(4).expand(-1, -1, -1, -1, 6, -1)
dist = torch.sum((fea - weight)**2, 1)
fea = torch.sum(torch.sum(np.e**(dist / (-2 * self.sigma**2)), 4), 3) / 16
return self.relu(self.bn(fea))
```
对比原有的代码,主要修改的地方如下:
1. 修改了 weight_alpha 和 weight_beta 的形状,将其从 4 改为 6,以便存储直线特征;
2. 在 forward 函数中,首先计算出所有点的邻居点,然后根据邻居点和中心点计算出直线特征(即方向向量和长度),并将其拼接在一起;
3. 将拼接后的直线特征与权重相减后,进行距离计算和高斯加权求和。
阅读全文