任意给出n*n的Triomino 拼图,以及任意缺陷位置(x,y),请用C语言递归程序给出两种不同的覆盖顺序

时间: 2024-02-25 13:59:00 浏览: 330
Triomino 拼图问题可以通过递归算法解决。下面给出两种不同的覆盖顺序: 1. 棋盘覆盖算法: 棋盘覆盖算法是一种递归算法,用于将 n*n 的棋盘用 Triomino 拼图覆盖。该算法的基本思想是将棋盘分成四个大小相等的子棋盘,然后在其中一个子棋盘上放置一个 Triomino 拼图,再递归地处理剩下的三个子棋盘。这个过程一直进行下去,直到棋盘被完全覆盖。 以下是C语言实现代码: ```c #include <stdio.h> #include <stdlib.h> #define N 100 int board[N][N]; int tile = 1; void chessboard(int tr, int tc, int dr, int dc, int size) { if (size == 1) return; int t = tile++; int s = size / 2; if (dr < tr + s && dc < tc + s) // 1st quadrant chessboard(tr, tc, dr, dc, s); else { board[tr + s - 1][tc + s - 1] = t; chessboard(tr, tc, tr + s - 1, tc + s - 1, s); } if (dr < tr + s && dc >= tc + s) // 2nd quadrant chessboard(tr, tc + s, dr, dc, s); else { board[tr + s - 1][tc + s] = t; chessboard(tr, tc + s, tr + s - 1, tc + s, s); } if (dr >= tr + s && dc < tc + s) // 3rd quadrant chessboard(tr + s, tc, dr, dc, s); else { board[tr + s][tc + s - 1] = t; chessboard(tr + s, tc, tr + s, tc + s - 1, s); } if (dr >= tr + s && dc >= tc + s) // 4th quadrant chessboard(tr + s, tc + s, dr, dc, s); else { board[tr + s][tc + s] = t; chessboard(tr + s, tc + s, tr + s, tc + s, s); } } int main() { int n, x, y; printf("Enter the size of the board (n x n): "); scanf("%d", &n); printf("Enter the position of the missing tile (x y): "); scanf("%d %d", &x, &y); board[x][y] = 0; chessboard(0, 0, x, y, n); printf("The result is:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) printf("%3d ", board[i][j]); printf("\n"); } return 0; } ``` 2. 暴力枚举算法: 暴力枚举算法是一种穷举所有可能的 Triomino 拼图的方法。该算法的基本思想是将缺陷位置周围的八个位置都尝试放置 Triomino 拼图,然后递归地处理剩下的空位。这个过程一直进行下去,直到所有空位都被填满。 以下是C语言实现代码: ```c #include <stdio.h> #include <stdlib.h> #define N 100 int board[N][N]; int tile = 1; int dx[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; int count() { int c = 0; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) if (board[i][j] == 0) c++; return c; } void solve(int x, int y) { int c = count(); if (c == 0) return; if (board[x][y] != 0) return; for (int i = 0; i < 8; i++) { int nx = x + dx[i]; int ny = y + dy[i]; if (nx < 0 || nx >= N || ny < 0 || ny >= N) continue; if (board[nx][ny] != 0) continue; int t = tile++; board[x][y] = t; board[nx][ny] = t; solve(x, y); solve(nx, ny); if (count() == 0) return; board[x][y] = 0; board[nx][ny] = 0; tile--; } } int main() { int n, x, y; printf("Enter the size of the board (n x n): "); scanf("%d", &n); printf("Enter the position of the missing tile (x y): "); scanf("%d %d", &x, &y); board[x][y] = -1; solve(x, y); printf("The result is:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) printf("%3d ", board[i][j]); printf("\n"); } return 0; } ``` 注意:以上两种算法中,Triomino 拼图的编号从1开始,0表示缺陷位置。
阅读全文

相关推荐

zip

大家在看

recommend-type

基于springboot的毕设-疫情网课管理系统(源码+配置说明).zip

基于springboot的毕设-疫情网课管理系统(源码+配置说明).zip 【项目技术】 开发语言:Java 框架:springboot 架构:B/S 数据库:mysql 【实现功能】 网课管理系统分为管理员和学生、教师三个角色的权限子模块。 管理员所能使用的功能主要有:首页、个人中心、学生管理、教师管理、班级管理、课程分类管理、课程表管理、课程信息管理、作业信息管理、请假信息管理、上课签到管理、论坛交流、系统管理等。 学生可以实现首页、个人中心、课程表管理、课程信息管理、作业信息管理、请假信息管理、上课签到管理等。 教师可以实现首页、个人中心、学生管理、班级管理、课程分类管理、课程表管理、课程信息管理、作业信息管理、请假信息管理、上课签到管理、系统管理等。
recommend-type

用L-Edit画PMOS版图的步骤-CMOS反相器版图设计

用L-Edit画PMOS版图的步骤 (1)打开L-Edit程序:L-Edit会自动将工作文件命名为Layout1.tdb并显示在窗口的标题栏上,如图3.35所示。 (2)另存为新文件:选择执行File/Save As子命令,打开“另存为”对话框,在“保存在”下拉列表框中选择存贮目录,在“文件名”文本框中输入新文件名称,如Ex1。 图3.35 L-Edit 的标题栏
recommend-type

双舵轮AGV控制简介1.docx

磁导航AGV除机械结构之外,电气部分主要包括:车载控制器、磁导航传感器、地标传感器、激光避障传感器、遥控器、触摸屏、急停开关、三色灯、安全触边、电池、伺服驱动器、舵轮(伺服电机)、无线通讯模块等,系统图如下:
recommend-type

数据分析项目-上饶市旅游景点可视化与评论文本分析(数据集+实验代码+8000字实验报告)

本次实验通过综合运用数据可视化分析、词云图分析、情感分析以及LDA主题分析等多种方法,对旅游景点进行了全面而深入的研究。通过这一系列分析,我们得出了以下结论,并据此对旅游市场的发展趋势和潜在机会进行了展望。 首先,通过数据可视化分析,我们了解到不同景点的评分、评论数以及热度分布情况。 其次,词云图分析为我们揭示了游客在评论中提及的关键词和热点话题。 在情感分析方面,我们发现大部分游客对于所游览的景点持有积极正面的情感态度。 最后,LDA主题分析帮助我们提取了游客评论中的潜在主题。这些主题涵盖了旅游体验、景点特色、历史文化等多个方面,为我们深入了解游客需求和兴趣提供了有力支持。通过对比不同主题的出现频率和分布情况,我们可以发现游客对于不同景点的关注点和偏好有所不同,这为我们制定个性化的旅游推广策略提供了依据。
recommend-type

ssc_lithium_cell_2RC_电池模型_二阶电池模型_电池建模_电池_SIMULINK_

二阶RC等效电路电池模型,电池建模入门必备

最新推荐

recommend-type

MyBatis之自查询使用递归实现 N级联动效果(两种实现方式)

在本文中,我们将介绍两种实现 N级联动效果的方式:使用递归函数和使用数组。 第一种方式:使用递归函数 在第一种方式中,我们可以使用递归函数来实现 N级联动效果。递归函数是一种特殊的函数,它可以调用自身以便...
recommend-type

Python入门程序 函数应用(判断素数、递归求n的阶乘、x的n次方、最大最小值、插入排序法)

在Python编程语言中,函数是组织代码的基本单元,它们能够执行特定任务并可重复使用。以下是对给定标题和描述中涉及的知识点的详细解释: 1. **判断素数** 判断一个数是否为素数是编程中常见的数学问题。在给定的...
recommend-type

python递归函数求n的阶乘,优缺点及递归次数设置方式

在本例中,我们将探讨如何使用递归函数计算一个数的阶乘,以及递归函数的优缺点和如何设置递归深度。 首先,让我们看看如何用Python编写一个计算阶乘的递归函数。阶乘的定义是对于非负整数n,n的阶乘表示为所有小于...
recommend-type

C语言中计算二叉树的宽度的两种方式

二叉树是一种每个节点最多有两个子节点的数据结构,通常分为左子节点和右子节点。计算二叉树的宽度,即找出树中最宽的一层包含的节点数。 **一、递归方式计算二叉树宽度** 递归方法基于二叉树的深度优先搜索(DFS...
recommend-type

C语言函数的递归和调用实例分析

在C语言中,函数的递归调用是一种强大的编程技巧,它允许一个函数在其定义内部调用自身。递归调用的主要特点是每次调用都会创建一个新的函数执行上下文,使得每次调用都有独立的变量空间。这种技术在解决某些特定...
recommend-type

Droste:探索Scala中的递归方案

标题和描述中都提到的“droste”和“递归方案”暗示了这个话题与递归函数式编程相关。此外,“droste”似乎是指一种递归模式或方案,而“迭代是人类,递归是神圣的”则是一种比喻,强调递归在编程中的优雅和力量。为了更好地理解这个概念,我们需要分几个部分来阐述。 首先,要了解什么是递归。在计算机科学中,递归是一种常见的编程技术,它允许函数调用自身来解决问题。递归方法可以将复杂问题分解成更小、更易于管理的子问题。在递归函数中,通常都会有一个基本情况(base case),用来结束递归调用的无限循环,以及递归情况(recursive case),它会以缩小问题规模的方式调用自身。 递归的概念可以追溯到数学中的递归定义,比如自然数的定义就是一个经典的例子:0是自然数,任何自然数n的后继者(记为n+1)也是自然数。在编程中,递归被广泛应用于数据结构(如二叉树遍历),算法(如快速排序、归并排序),以及函数式编程语言(如Haskell、Scala)中,它提供了强大的抽象能力。 从标签来看,“scala”,“functional-programming”,和“recursion-schemes”表明了所讨论的焦点是在Scala语言下函数式编程与递归方案。Scala是一种多范式的编程语言,结合了面向对象和函数式编程的特点,非常适合实现递归方案。递归方案(recursion schemes)是函数式编程中的一个高级概念,它提供了一种通用的方法来处理递归数据结构。 递归方案主要分为两大类:原始递归方案(原始-迭代者)和高级递归方案(例如,折叠(fold)/展开(unfold)、catamorphism/anamorphism)。 1. 原始递归方案(primitive recursion schemes): - 原始递归方案是一种模式,用于定义和操作递归数据结构(如列表、树、图等)。在原始递归方案中,数据结构通常用代数数据类型来表示,并配合以不变性原则(principle of least fixed point)。 - 在Scala中,原始递归方案通常通过定义递归类型类(如F-Algebras)以及递归函数(如foldLeft、foldRight)来实现。 2. 高级递归方案: - 高级递归方案进一步抽象了递归操作,如折叠和展开,它们是处理递归数据结构的强大工具。折叠允许我们以一种“下降”方式来遍历和转换递归数据结构,而展开则是“上升”方式。 - Catamorphism是将数据结构中的值“聚合成”单一值的过程,它是一种折叠操作,而anamorphism则是从单一值生成数据结构的过程,可以看作是展开操作。 - 在Scala中,高级递归方案通常与类型类(如Functor、Foldable、Traverse)和高阶函数紧密相关。 再回到“droste”这个词,它很可能是一个递归方案的实现或者是该领域内的一个项目名。根据文件名称“droste-master”,可以推测这可能是一个仓库,其中包含了与递归方案相关的Scala代码库或项目。 总的来说,递归方案和“droste”项目都属于高级函数式编程实践,它们为处理复杂的递归数据结构提供了一种系统化和模块化的手段。在使用Scala这类函数式语言时,递归方案能帮助开发者写出更简洁、可维护的代码,同时能够更安全、有效地处理递归结构的深层嵌套数据。
recommend-type

Simulink DLL性能优化:实时系统中的高级应用技巧

# 摘要 本文全面探讨了Simulink DLL性能优化的理论与实践,旨在提高实时系统中DLL的性能表现。首先概述了性能优化的重要性,并讨论了实时系统对DLL性能的具体要求以及性能评估的方法。随后,详细介绍了优化策略,包括理论模型和系统层面的优化。接着,文章深入到编码实践技巧,讲解了高效代码编写原则、DLL接口优化和
recommend-type

rust语言将文本内容转换为音频

Rust是一种系统级编程语言,它以其内存安全性和高性能而闻名。虽然Rust本身并不是专门用于音频处理的语言,但它可以与其他库配合来实现文本转音频的功能。通常这种任务需要借助外部库,比如`ncurses-rs`(控制台界面库)结合`wave`、`audio-kit-rs`等音频处理库,或者使用更专业的第三方库如`flac`、`opus`等进行编码。 以下是使用Rust进行文本转音频的一个简化示例流程: 1. 安装必要的音频处理库:首先确保已经安装了`cargo install flac wave`等音频编码库。 2. 导入库并创建音频上下文:导入`flac`库,创建一个可以写入FLAC音频
recommend-type

安卓蓝牙技术实现照明远程控制

标题《基于安卓蓝牙的远程控制照明系统》指向了一项技术实现,即利用安卓平台上的蓝牙通信能力来操控照明系统。这一技术实现强调了几个关键点:移动平台开发、蓝牙通信协议以及照明控制的智能化。下面将从这三个方面详细阐述相关知识点。 **安卓平台开发** 安卓(Android)是Google开发的一种基于Linux内核的开源操作系统,广泛用于智能手机和平板电脑等移动设备上。安卓平台的开发涉及多个层面,从底层的Linux内核驱动到用户界面的应用程序开发,都需要安卓开发者熟练掌握。 1. **安卓应用框架**:安卓应用的开发基于一套完整的API框架,包含多个模块,如Activity(界面组件)、Service(后台服务)、Content Provider(数据共享)和Broadcast Receiver(广播接收器)等。在远程控制照明系统中,这些组件会共同工作来实现用户界面、蓝牙通信和状态更新等功能。 2. **安卓生命周期**:安卓应用有着严格的生命周期管理,从创建到销毁的每个状态都需要妥善管理,确保应用的稳定运行和资源的有效利用。 3. **权限管理**:由于安卓应用对硬件的控制需要相应的权限,开发此类远程控制照明系统时,开发者必须在应用中声明蓝牙通信相关的权限。 **蓝牙通信协议** 蓝牙技术是一种短距离无线通信技术,被广泛应用于个人电子设备的连接。在安卓平台上开发蓝牙应用,需要了解和使用安卓提供的蓝牙API。 1. **蓝牙API**:安卓系统通过蓝牙API提供了与蓝牙硬件交互的能力,开发者可以利用这些API进行设备发现、配对、连接以及数据传输。 2. **蓝牙协议栈**:蓝牙协议栈定义了蓝牙设备如何进行通信,安卓系统内建了相应的协议栈来处理蓝牙数据包的发送和接收。 3. **蓝牙配对与连接**:在实现远程控制照明系统时,必须处理蓝牙设备间的配对和连接过程,这包括了PIN码验证、安全认证等环节,以确保通信的安全性。 **照明系统的智能化** 照明系统的智能化是指照明设备可以被远程控制,并且可以与智能设备进行交互。在本项目中,照明系统的智能化体现在能够响应安卓设备发出的控制指令。 1. **远程控制协议**:照明系统需要支持一种远程控制协议,安卓应用通过蓝牙通信发送特定指令至照明系统。这些指令可能包括开/关灯、调整亮度、改变颜色等。 2. **硬件接口**:照明系统中的硬件部分需要具备接收和处理蓝牙信号的能力,这通常通过特定的蓝牙模块和微控制器来实现。 3. **网络通信**:如果照明系统不直接与安卓设备通信,还可以通过Wi-Fi或其它无线技术进行间接通信。此时,照明系统内部需要有相应的网络模块和协议栈。 **相关技术实现示例** 在具体技术实现方面,假设我们正在开发一个名为"LightControl"的安卓应用,该应用能够让用户通过蓝牙与家中的智能照明灯泡进行交互。以下是几个关键步骤: 1. **用户界面设计**:设计简洁直观的用户界面,提供必要的按钮和指示灯,用于显示当前设备状态和发送控制指令。 2. **蓝牙操作实现**:编写代码实现搜索蓝牙设备、配对、建立连接及数据传输的功能。安卓应用需扫描周围蓝牙设备,待用户选择相应照明灯泡后,进行配对和连接,之后便可以发送控制指令。 3. **指令解码与执行**:照明设备端需要有对应的程序来监听蓝牙信号,当接收到特定格式的指令时,执行相应的控制逻辑,如开启/关闭电源、调节亮度等。 4. **安全性考虑**:确保通信过程中的数据加密和设备认证,防止未授权的访问或控制。 在技术细节上,开发者需要对安卓开发环境、蓝牙通信流程有深入的了解,并且在硬件端具备相应的编程能力,以保证应用与硬件的有效对接和通信。 通过上述内容的详细阐述,可以看出安卓蓝牙远程控制照明系统的实现是建立在移动平台开发、蓝牙通信协议和智能化硬件控制等多个方面的综合技术运用。开发者需要掌握的不仅仅是编程知识,还应包括对蓝牙技术的深入理解和对移动设备通信机制的全面认识。
recommend-type

【Simulink DLL集成】:零基础快速上手,构建高效模型策略

# 摘要 本文综合介绍了Simulink模型与DLL(动态链接库)的集成过程,详细阐述了从模型构建基础到DLL集成的高级策略。首先概述了Simulink模型构建的基本概念、参数化和仿真调试方法。接着,深入探讨了DLL的基础知识、在Simulink中的集成