任意给出n*n的Triomino 拼图,以及任意缺陷位置(x,y),请用C语言递归程序给出两种不同的覆盖顺序
时间: 2024-02-25 13:59:00 浏览: 330
Triomino 拼图问题可以通过递归算法解决。下面给出两种不同的覆盖顺序:
1. 棋盘覆盖算法:
棋盘覆盖算法是一种递归算法,用于将 n*n 的棋盘用 Triomino 拼图覆盖。该算法的基本思想是将棋盘分成四个大小相等的子棋盘,然后在其中一个子棋盘上放置一个 Triomino 拼图,再递归地处理剩下的三个子棋盘。这个过程一直进行下去,直到棋盘被完全覆盖。
以下是C语言实现代码:
```c
#include <stdio.h>
#include <stdlib.h>
#define N 100
int board[N][N];
int tile = 1;
void chessboard(int tr, int tc, int dr, int dc, int size)
{
if (size == 1)
return;
int t = tile++;
int s = size / 2;
if (dr < tr + s && dc < tc + s) // 1st quadrant
chessboard(tr, tc, dr, dc, s);
else
{
board[tr + s - 1][tc + s - 1] = t;
chessboard(tr, tc, tr + s - 1, tc + s - 1, s);
}
if (dr < tr + s && dc >= tc + s) // 2nd quadrant
chessboard(tr, tc + s, dr, dc, s);
else
{
board[tr + s - 1][tc + s] = t;
chessboard(tr, tc + s, tr + s - 1, tc + s, s);
}
if (dr >= tr + s && dc < tc + s) // 3rd quadrant
chessboard(tr + s, tc, dr, dc, s);
else
{
board[tr + s][tc + s - 1] = t;
chessboard(tr + s, tc, tr + s, tc + s - 1, s);
}
if (dr >= tr + s && dc >= tc + s) // 4th quadrant
chessboard(tr + s, tc + s, dr, dc, s);
else
{
board[tr + s][tc + s] = t;
chessboard(tr + s, tc + s, tr + s, tc + s, s);
}
}
int main()
{
int n, x, y;
printf("Enter the size of the board (n x n): ");
scanf("%d", &n);
printf("Enter the position of the missing tile (x y): ");
scanf("%d %d", &x, &y);
board[x][y] = 0;
chessboard(0, 0, x, y, n);
printf("The result is:\n");
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
printf("%3d ", board[i][j]);
printf("\n");
}
return 0;
}
```
2. 暴力枚举算法:
暴力枚举算法是一种穷举所有可能的 Triomino 拼图的方法。该算法的基本思想是将缺陷位置周围的八个位置都尝试放置 Triomino 拼图,然后递归地处理剩下的空位。这个过程一直进行下去,直到所有空位都被填满。
以下是C语言实现代码:
```c
#include <stdio.h>
#include <stdlib.h>
#define N 100
int board[N][N];
int tile = 1;
int dx[8] = {-1, -1, 0, 1, 1, 1, 0, -1};
int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
int count()
{
int c = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (board[i][j] == 0)
c++;
return c;
}
void solve(int x, int y)
{
int c = count();
if (c == 0)
return;
if (board[x][y] != 0)
return;
for (int i = 0; i < 8; i++)
{
int nx = x + dx[i];
int ny = y + dy[i];
if (nx < 0 || nx >= N || ny < 0 || ny >= N)
continue;
if (board[nx][ny] != 0)
continue;
int t = tile++;
board[x][y] = t;
board[nx][ny] = t;
solve(x, y);
solve(nx, ny);
if (count() == 0)
return;
board[x][y] = 0;
board[nx][ny] = 0;
tile--;
}
}
int main()
{
int n, x, y;
printf("Enter the size of the board (n x n): ");
scanf("%d", &n);
printf("Enter the position of the missing tile (x y): ");
scanf("%d %d", &x, &y);
board[x][y] = -1;
solve(x, y);
printf("The result is:\n");
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
printf("%3d ", board[i][j]);
printf("\n");
}
return 0;
}
```
注意:以上两种算法中,Triomino 拼图的编号从1开始,0表示缺陷位置。
阅读全文