torch.norm(w)

时间: 2023-10-26 08:22:29 浏览: 47
torch.norm(w)是用来计算张量w的范数的函数。它可以计算任意阶的范数,包括向量的1-范数、2-范数、无穷范数,矩阵的Frobenius范数等。默认情况下,torch.norm(w)计算的是向量的2范数。例如: ```python import torch w = torch.randn(3, 3) print("w:\n", w) print("L2 norm of w:", torch.norm(w)) # 计算w的2范数 print("L1 norm of w:", torch.norm(w, p=1)) # 计算w的1范数 print("Inf norm of w:", torch.norm(w, float('inf'))) # 计算w的无穷范数 ``` 输出结果如下: ``` w: tensor([[-0.4544, -0.5190, 0.4007], [ 1.3459, 0.4057, 1.1677], [ 1.0193, -0.6502, -1.6116]]) L2 norm of w: tensor(2.5312) L1 norm of w: tensor(5.1536) Inf norm of w: tensor(2.3585) ```
相关问题

class K_a(nn.Module): def __init__(self,in_dim, **kwargs): super(K_a, self).__init__(**kwargs) self.r_sigma = torch.nn.Parameter(torch.tensor(1.0), requires_grad=True) self.alpha = torch.nn.Parameter(torch.tensor(1.0), requires_grad=True) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, h, w = x.size() y = x.view(b*c,h,w) m = torch.unsqueeze(y, axis=1) n = torch.unsqueeze(y, axis=2) diff = m -n dist = torch.norm(diff, p=2, dim=1) k = torch.exp(-dist ** 2 * self.r_sigma) k = k.view(b, c, h, w) k = self.sigmoid(k) k = k * x return k 这段代码是要实现什么功能?并且每句代码的含义

这段代码实现了一个K_a模型,其功能是对输入的特征图x进行加权处理,加权的方式是通过计算特征图中每个像素点与其他像素点之间的距离得到的相似度,再使用一个可学习的参数r_sigma进行权重调节,最终得到一个加权后的特征图k。具体解释如下: 1. `class K_a(nn.Module):`:定义一个K_a模型,继承自nn.Module类。 2. `def __init__(self,in_dim, **kwargs):`:定义K_a模型的初始化方法。 3. `super(K_a, self).__init__(**kwargs)`:调用父类nn.Module的初始化方法。 4. `self.r_sigma = torch.nn.Parameter(torch.tensor(1.0), requires_grad=True)`:定义可学习参数r_sigma,并将其初始化为1.0。 5. `self.alpha = torch.nn.Parameter(torch.tensor(1.0), requires_grad=True)`:定义可学习参数alpha,并将其初始化为1.0。但是这个alpha参数在代码中没有使用,可能是遗漏了。 6. `self.sigmoid = nn.Sigmoid()`:定义一个sigmoid函数,用于将相似度转化为权重值。 7. `def forward(self, x):`:定义K_a模型的前向传播方法,其中x为输入的特征图。 8. `b, c, h, w = x.size()`:获取特征图的形状,其中b为batch size,c为通道数,h为高度,w为宽度。 9. `y = x.view(b*c,h,w)`:将特征图x重塑为一个二维矩阵,其中第一维表示通道数,第二、三维表示空间位置。 10. `m = torch.unsqueeze(y, axis=1)`:在y的第一维前插入一个维度,使得m的形状变为(b*c,1,h,w),表示每个通道的特征图。 11. `n = torch.unsqueeze(y, axis=2)`:在y的第二维前插入一个维度,使得n的形状变为(b*c,h,1,w),表示每个位置的特征向量。 12. `diff = m - n`:计算每个位置的特征向量与其他位置的特征向量之间的差异。 13. `dist = torch.norm(diff, p=2, dim=1)`:计算每个位置的特征向量与其他位置的特征向量之间的欧几里得距离,其中p=2表示欧几里得距离,dim=1表示在第一维上求距离。 14. `k = torch.exp(-dist ** 2 * self.r_sigma)`:计算每个位置与其他位置之间的相似度,公式为e^(-d^2 * r_sigma),其中d为欧几里得距离,r_sigma为可学习参数,用于调节相似度的权重。 15. `k = k.view(b, c, h, w)`:将k重塑为特征图的形状,以便与输入的特征图进行加权处理。 16. `k = self.sigmoid(k)`:将相似度转化为权重值,通过sigmoid函数将k的值映射到0~1之间。 17. `k = k * x`:对输入的特征图进行加权处理,得到加权后的特征图k。 18. `return k`:返回加权后的特征图k。

def forward(self): # h是物品id嵌入的权重 h = self.item_id_embedding.weight # 将两个张量(tensor)按指定维度拼接在一起 # 按行把两个嵌入权重拼接到一起 ego_embeddings = torch.cat((self.user_embedding.weight, self.item_id_embedding.weight), dim=0) # 将其变成list all_embeddings = [ego_embeddings] for i in range(self.n_layers): # self.norm_adj拉普拉斯矩阵,返回的是稀疏张量:坐标,值,size # L*W ego_embeddings = torch.sparse.mm(self.norm_adj, ego_embeddings) # all_embeddings是所有层的嵌入 all_embeddings += [ego_embeddings] # outputs = torch.stack(inputs, dim=?) → Tensor # 沿着一个新的维度对all_embeddings进行连接,inputs : 待连接的张量序列,python的序列数据只有list和tuple all_embeddings = torch.stack(all_embeddings, dim=1) all_embeddings = all_embeddings.mean(dim=1, keepdim=False) u_g_embeddings, i_g_embeddings = torch.split(all_embeddings, [self.n_users, self.n_items], dim=0) return u_g_embeddings, i_g_embeddings + h解释每一句话的含义

这段代码是用来实现图卷积网络(Graph Convolutional Networks,GCN)的前向传播(forward)过程的。 具体来说,它首先定义了一个物品(item)的id嵌入权重 h,然后将用户(user)和物品的id嵌入权重按行拼接在一起,得到一个矩阵 ego_embeddings。接下来,它通过多层图卷积网络对 ego_embeddings 进行迭代,得到每一层的嵌入 all_embeddings,并将所有层的嵌入沿着新的维度进行连接,得到一个三维张量 all_embeddings。再对 all_embeddings 进行平均池化,得到一个二维张量,其中每一行对应一个用户或一个物品的嵌入向量。最后,它将 all_embeddings 按行分割成用户嵌入向量和物品嵌入向量,并将物品嵌入向量加上 h,最终返回用户嵌入向量和物品嵌入向量。 其中,self.user_embedding 是用户id的嵌入权重,self.item_id_embedding 是物品id的嵌入权重,self.n_layers 是图卷积网络的层数,self.norm_adj 是规范化的拉普拉斯矩阵。torch.sparse.mm 是稀疏矩阵相乘的函数,torch.stack 是张量拼接的函数,torch.split 是按维度分割张量的函数,torch.mean 是张量平均池化的函数,"+" 是张量加法的运算符。

相关推荐

class SizeBlock(nn.Module): def __init__(self, conv): super(SizeBlock, self).__init__() self.conv, inc = nc2dc(conv) self.glob = nn.Sequential( nn.Linear(2, 64), nn.ReLU(inplace=True), nn.Linear(64, 32) ) self.local = nn.Sequential( nn.Conv2d(inc, 32, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, 3, padding=1) ) self.fuse = nn.Sequential( nn.Conv2d(64, 32, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 3 * 3 * 2, 3, padding=1) ) self.relu = nn.ReLU() def forward(self, x, bsize): b, c, h, w = x.shape g_offset = self.glob(bsize) g_offset = g_offset.view(b, -1, 1, 1).repeat(1, 1, h, w).contiguous() l_offset = self.local(x) offset = self.fuse(torch.cat((g_offset, l_offset), dim=1)) fea = self.conv(x, offset) return self.relu(fea)和class ResBase(nn.Module): def __init__(self, res_name): super(ResBase, self).__init__() # model_resnet = res_dict[res_name](pretrained=False, norm_layer=BN_2D) model_resnet = res_dict[res_name](pretrained=True) self.sizeblock = SizeBlock self.conv1 = model_resnet.conv1 self.bn1 = model_resnet.bn1 self.relu = model_resnet.relu self.maxpool = model_resnet.maxpool self.layer1 = model_resnet.layer1 self.layer2 = model_resnet.layer2 self.layer3 = model_resnet.layer3 self.layer4 = model_resnet.layer4 self.avgpool = model_resnet.avgpool self.in_features = model_resnet.fc.in_features def forward(self, x, msize): print(x.shape) # torch.Size([8, 3, 384, 384]) x = self.sizeblock(x, msize) x = self.conv1(x) print(x.shape) # torch.Size([8, 64, 192, 192]) x = self.bn1(x) x = self.relu(x) # x = self.self.selist[1](x, msize) x = self.maxpool(x) print(x.shape) # torch.Size([8, 64, 96, 96]) x = self.layer1(x) print(x.shape) # torch.Size([8, 256, 96, 96]) # x = self.self.selist[2](x, msize) x = self.layer2(x) print(x.shape) # torch.Size([8, 512, 48, 48]) # x = self.self.selist[3](x, msize) x = self.layer3(x) # print(x.shape) # torch.Size([8, 1024, 24, 24]) x = self.layer4(x) # print(x.shape) # torch.Size([8, 2048, 12, 12]) x = self.avgpool(x) print(x.shape) # torch.Size([8, 2048, 1, 1]) x = x.view(x.size(0), -1) print(x.shape) # torch.Size([8, 2048]) a = input() return x,如何使用SizeBlock的forward函数

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

class MHAlayer(nn.Module): def __init__(self, n_heads, cat, input_dim, hidden_dim, attn_dropout=0.1, dropout=0): super(MHAlayer, self).__init__() self.n_heads = n_heads self.input_dim = input_dim self.hidden_dim = hidden_dim self.head_dim = self.hidden_dim / self.n_heads self.dropout = nn.Dropout(attn_dropout) self.dropout1 = nn.Dropout(dropout) self.norm = 1 / math.sqrt(self.head_dim) self.w = nn.Linear(input_dim * cat, hidden_dim, bias=False) self.k = nn.Linear(input_dim, hidden_dim, bias=False) self.v = nn.Linear(input_dim, hidden_dim, bias=False) self.fc = nn.Linear(hidden_dim, hidden_dim, bias=False) def forward(self, state_t, context, mask): ''' :param state_t: (batch_size,1,input_dim*3(GATembeding,fist_node,end_node)) :param context: (batch_size,n_nodes,input_dim) :param mask: selected nodes (batch_size,n_nodes) :return: ''' batch_size, n_nodes, input_dim = context.size() Q = self.w(state_t).view(batch_size, 1, self.n_heads, -1) K = self.k(context).view(batch_size, n_nodes, self.n_heads, -1) V = self.v(context).view(batch_size, n_nodes, self.n_heads, -1) Q, K, V = Q.transpose(1, 2), K.transpose(1, 2), V.transpose(1, 2) compatibility = self.norm * torch.matmul(Q, K.transpose(2, 3)) compatibility = compatibility.squeeze(2) mask = mask.unsqueeze(1).expand_as(compatibility) u_i = compatibility.masked_fill(mask.bool(), float("-inf")) scores = F.softmax(u_i, dim=-1) scores = scores.unsqueeze(2) out_put = torch.matmul(scores, V) out_put = out_put.squeeze(2).view(batch_size, self.hidden_dim) out_put = self.fc(out_put) return out_put

最新推荐

recommend-type

grpcio-1.63.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

SQLyog-13.1.3-0.x86Community.exe

SQLyog-13.1.3-0.x86Community
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。