怎么用Python对图像中的2个直线测量距离
时间: 2023-12-27 12:03:25 浏览: 138
要用Python对图像中的两个直线测量距离,可以使用OpenCV库。具体步骤如下:
1.导入必要的库
```
import cv2
import numpy as np
```
2.加载图像并转换为灰度图像
```
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
3.边缘检测
```
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
```
4.使用霍夫变换检测直线
```
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
```
5.绘制检测到的直线
```
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
```
6.计算两条直线的交点
```
for i in range(len(lines)):
for j in range(i+1, len(lines)):
rho1, theta1 = lines[i][0]
rho2, theta2 = lines[j][0]
a1 = np.cos(theta1)
b1 = np.sin(theta1)
a2 = np.cos(theta2)
b2 = np.sin(theta2)
x0 = a1 * rho1
y0 = b1 * rho1
x1 = int(x0 + 1000*(-b1))
y1 = int(y0 + 1000*(a1))
x2 = int(x0 - 1000*(-b1))
y2 = int(y0 - 1000*(a1))
x3 = a2 * rho2
y3 = b2 * rho2
x4 = int(x3 + 1000*(-b2))
y4 = int(y3 + 1000*(a2))
x5 = int(x3 - 1000*(-b2))
y5 = int(y3 - 1000*(a2))
d = (b1 * a2) - (a1 * b2)
if d != 0:
x = ((b2 * rho1) - (b1 * rho2)) / d
y = ((a1 * rho2) - (a2 * rho1)) / d
cv2.circle(img, (int(x), int(y)), 10, (0, 255, 0), -1)
```
7.计算两个交点之间的距离
```
distance = np.sqrt((x5 - x1)**2 + (y5 - y1)**2)
print('The distance between two lines is: ', distance)
```
完整的代码如下:
```
import cv2
import numpy as np
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
for i in range(len(lines)):
for j in range(i+1, len(lines)):
rho1, theta1 = lines[i][0]
rho2, theta2 = lines[j][0]
a1 = np.cos(theta1)
b1 = np.sin(theta1)
a2 = np.cos(theta2)
b2 = np.sin(theta2)
x0 = a1 * rho1
y0 = b1 * rho1
x1 = int(x0 + 1000*(-b1))
y1 = int(y0 + 1000*(a1))
x2 = int(x0 - 1000*(-b1))
y2 = int(y0 - 1000*(a1))
x3 = a2 * rho2
y3 = b2 * rho2
x4 = int(x3 + 1000*(-b2))
y4 = int(y3 + 1000*(a2))
x5 = int(x3 - 1000*(-b2))
y5 = int(y3 - 1000*(a2))
d = (b1 * a2) - (a1 * b2)
if d != 0:
x = ((b2 * rho1) - (b1 * rho2)) / d
y = ((a1 * rho2) - (a2 * rho1)) / d
cv2.circle(img, (int(x), int(y)), 10, (0, 255, 0), -1)
distance = np.sqrt((x5 - x1)**2 + (y5 - y1)**2)
print('The distance between two lines is: ', distance)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,`image.jpg`是待测量距离的图像文件名,可以根据实际情况进行修改。
阅读全文