import numpy as np import matplotlib.pyplot as plt x = np.random.uniform( -3,3, size=100) x = np.reshape(-1,1) y = 0.5 * x ** 2 + x + 2 + np.random.normal(0,1,size=100) plt.scatter(x,y) plt.show
时间: 2023-06-24 07:04:12 浏览: 145
这段代码是在生成一组随机数据,并画出散点图。具体解释如下:
1. `import numpy as np`:导入numpy库,并给库起一个别名 np。
2. `import matplotlib.pyplot as plt`:导入matplotlib库中的绘图模块,并给模块起一个别名 plt。
3. `x = np.random.uniform( -3,3, size=100)`:在区间 [-3, 3] 中随机生成100个数,并将这些数存储在数组 x 中。
4. `x = np.reshape(-1,1)`:将数组 x 的形状改为 (100, 1)。
5. `y = 0.5 * x ** 2 + x + 2 + np.random.normal(0,1,size=100)`:根据一定的数学公式计算 y 值,并加入一些随机噪声。
6. `plt.scatter(x,y)`:用散点图的方式将数组 x 和 y 绘制出来。
7. `plt.show()`:显示图形。
这段代码的作用是生成一个二次函数的随机数据,并将这些数据用散点图的形式显示出来。
相关问题
# General imports import numpy as np import pandas as pd import matplotlib.pyplot as plt # Generating data X = np.random.randn(100,1) c = np.random.uniform(-10,10,(100,)) # adding another linear column X = np.hstack((X, 4*X)) Y = (4*X[:,1] + c) plt.scatter(X[:, 0], Y) plt.show() plt.scatter(X[:, 1], Y) plt.show() # Applying linear reg from sklearn.linear_model import LinearRegression regressor = LinearRegression().fit(X, Y) # Checking the accuracy from sklearn.metrics import r2_score print(r2_score(regressor.predict(X), Y)
这段代码实现了以下功能:
1. 导入所需的库:`numpy`、`pandas`、`matplotlib.pyplot`。
2. 生成随机数据:使用 `numpy.random.randn()` 生成一个形状为 (100, 1) 的随机数矩阵 `X`,再使用 `numpy.random.uniform()` 生成一个形状为 (100,) 的在 -10 到 10 范围内的均匀分布随机数数组 `c`。
3. 添加另一个线性列:将 `X` 矩阵与 4 倍的 `X` 水平堆叠,生成新的 `X` 矩阵。
4. 计算目标变量 `Y`:根据线性关系 Y = 4*X[:,1] + c 计算目标变量 `Y`。
5. 可视化散点图:使用 `matplotlib.pyplot.scatter()` 分别绘制 `X[:,0]` 和 `X[:,1]` 与 `Y` 的散点图。
6. 应用线性回归:导入 `LinearRegression` 类并实例化一个回归器对象 `regressor`,然后使用 `fit()` 方法拟合数据。
7. 检查准确性:导入 `r2_score` 函数,使用回归器对象的 `predict()` 方法预测结果并计算 R² 分数,最后使用 `print()` 打印出 R² 分数。
请注意,这段代码中的注释提供了对代码功能和意义的解释。
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_iris iris=load_iris() X=iris.data[:,:2] Y=iris.target print(iris.feature_names) cmap_light=ListedColormap(['#FFAAAA','#AAFFAA','#AAAAFF']) cmap_bold=ListedColormap(['#FF0000','#00FF00','#0000FF']) clf=KNeighborsClassifier(n_neighbors=10,weights='uniform') clf.fit(X,Y) #画出决策边界 x_min,x_max=X[:,0].min()-1,X[:,0].max()+1 y_min,y_max=X[:,1].min()-1,X[:,1].max()+1 xx,yy=np.meshgrid(np.arange(x_min,x_max,0.02), np.arange(y_min,y_max,0.02)) Z=clf.predict(np.c_[xx.ravel(),yy.ravel()]) reshape(xx.shape) plt.figure() plt.pcolormesh(xx,yy,Z,cmap=cmap_light) #绘制预测结果图 plt.scatter(X[:,0],X[:,1],c=Y,cmap=cmap_bold) plt.xlim(xx,min(),xx.max()) plt.ylim(yy.min(),yy.max()) plt.title('3_Class(k=10,weights=uniform)') plt.show()
这段代码的作用是使用K近邻算法对鸢尾花数据集进行分类,并绘制出分类的决策边界图。具体来说,代码首先加载鸢尾花数据集并提取其中的前两个特征作为模型输入,然后使用KNeighborsClassifier类创建一个K近邻分类器,并使用fit方法拟合数据集。接着,代码使用meshgrid函数生成一组网格点,并将其作为输入数据进行分类预测,最后将分类结果绘制成彩色的决策边界图。同时,代码还会将数据集中的样本点用散点图表示出来。
阅读全文