最小二乘法实现二元线性回归

时间: 2023-10-01 20:11:53 浏览: 50
最小二乘法是一种常用的回归分析方法,用于确定两个变量之间的线性关系。在二元线性回归中,我们希望找到一个线性方程,将自变量 X 和因变量 Y 进行拟合。假设我们有 n 个样本数据,X 和 Y 分别表示自变量和因变量,则线性回归的模型可以表示为: Y = β0 + β1X + ε 其中,β0 和 β1 是模型的参数,ε 表示误差项。我们的目标是找到 β0 和 β1 的最优值,使得模型可以最好地拟合数据。 最小二乘法的基本思想是,通过最小化误差平方和来估计模型参数。误差平方和(SSE)是指模型预测值与实际值之间的差异的平方和,即: SSE = Σ(Yi - Ŷi)2 其中,Yi 表示第 i 个样本的实际值,Ŷi 表示模型预测的值。 为了最小化 SSE,我们需要对 β0 和 β1 分别求偏导,并令偏导数为 0,得到: β1 = Σ((Xi - X̄)(Yi - Ȳ)) / Σ(Xi - X̄)2 β0 = Ȳ - β1X̄ 其中,X̄ 和 Ȳ 分别表示自变量 X 和因变量 Y 的平均值。 下面是 Python 代码实现: ```python import numpy as np def linear_regression(x, y): # 求 X 和 Y 的平均值 x_mean = np.mean(x) y_mean = np.mean(y) # 根据公式计算 β1 和 β0 numerator = np.sum((x - x_mean) * (y - y_mean)) denominator = np.sum((x - x_mean) ** 2) beta_1 = numerator / denominator beta_0 = y_mean - beta_1 * x_mean return beta_0, beta_1 ``` 其中,x 和 y 是分别存储自变量和因变量的 numpy 数组。函数 linear_regression 返回 β0 和 β1 的值。

相关推荐

最新推荐

recommend-type

基于springboot开发的前后端分离的简易进销存后台管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于springboot-mqtt的温度、湿度、六氟化硫浓度实时监控系统.zip

基于springboot的java毕业&课程设计
recommend-type

会计信息化对华强公司内部审计的影响研究.docx

会计信息化对华强公司内部审计的影响研究.docx
recommend-type

修改谷歌提供的样例量子卷积神经网络模型,基于KDD99数据集进行训练,实现了网络攻击分类检测。.zip

卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

用泽尼克多项式拟合表面的功能matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。