采用prim算法或kruskal算法求最小生成树

时间: 2023-05-31 18:19:30 浏览: 75
### 回答1: Prim算法和Kruskal算法都是求解最小生成树的经典算法。 Prim算法是一种贪心算法,从一个起点开始,每次选择与当前生成树相邻的最小边,将其加入生成树中,直到生成树包含所有节点为止。 Kruskal算法也是一种贪心算法,将所有边按照权值从小到大排序,依次加入生成树中,如果加入该边不会形成环,则加入生成树中,直到生成树包含所有节点为止。 两种算法的时间复杂度都为O(ElogE),其中E为边数。但是Prim算法更适合稠密图,Kruskal算法更适合稀疏图。 ### 回答2: Prim算法和Kruskal算法都是求解无向连通图的最小生成树的经典算法。它们的本质思想相似,都是通过贪心策略,逐步加入边,生成具有最小总权值的生成树。 Prim算法基于节点集合的思想。从一个任意节点开始,逐步加入与之距离最小的未被访问的节点,直到包含所有节点为止。把已经加入生成树的节点称为已访问节点,把还没加入的节点称为未访问节点。在每一步中,从已访问节点中选取距离最小的节点,并把它加入生成树,把它未被访问的邻居加入未访问节点集合。重复这个过程直到所有节点都被访问过。Prim算法的时间复杂度为O(n^2),如果采用优先队列优化,可以降至O(nlogn)。 Kruskal算法基于边集合的思想。把所有的边按照权值从小到大排序,逐步加入边,直到包含所有节点为止,并保证不会形成环。在每一步中,从未加入生成树的边中取出权值最小的边,如果这条边连接的两个节点不在同一个连通分量中,则把这条边加入生成树,并把节点所在的连通分量合并。重复这个过程直到所有节点被合并为一个连通分量。Kruskal算法的时间复杂度为O(mlogm),其中m为边数。 两种算法都具有计算简单,时间复杂度低的特点,但是具体选择哪种算法还需要根据具体问题的特点进行考虑。如果图是密集图,采用Prim算法更高效;如果图是稀疏图,采用Kruskal算法更具优势。 ### 回答3: prim算法和kruskal算法是求解最小生成树的常用算法之一,它们的实现思路不同,但结果相同,都能够得到一个最小的生成树。 首先,我们来介绍prim算法。prim算法是一种贪心算法,它从一个顶点开始,逐步选取与当前最小生成树相连的一条最小边,直到所有顶点都被访问过,形成一个最小生成树。算法的实现可以用一个小根堆来存储当前未加入最小生成树的边,每次选择堆顶元素(即当前最小的边),将其加入生成树中,同时更新堆中元素。由于prim算法每次只选择一条边,因此它的时间复杂度为O(ElogV),其中E为边的数量,V为顶点的数量。 其次,我们来介绍kruskal算法。kruskal算法是一种基于边的贪心算法,它按照边权值从小到大选取边,并判断该边是否会形成环,如果不会则加入生成树中,直到添加的边数等于顶点数减一或者无法再添加新的边为止。算法的实现可以用一个并查集来保存顶点之间的关系,每次加入一条新边时,判断该边两端点是否在同一集合中,如果不在,则将它们合并到同一个集合中,并将该边加入生成树中。由于kruskal算法需要对所有边进行排序,因此时间复杂度为O(ElogE),其中E为边的数量。 在应用中,prim算法适用于稠密图,因为它只需要遍历与当前已加入的点相邻的点,并找到一个与当前最小生成树相连的最小边;而kruskal算法适用于稀疏图,因为它只需要遍历所有边,并通过并查集判断是否形成环,可以处理相对较大的边数。 总之,prim算法和kruskal算法都是求解最小生成树的有效算法,具体实现中应根据图的特点选择最优算法来解决问题。

相关推荐

好的,我来为您解答这个问题。 首先,Prim算法和Kruskal算法都是用来生成最小生成树的算法,它们的基本思想都是贪心算法。 下面分别介绍Prim算法和Kruskal算法的实现方法。 1. Prim算法 Prim算法的基本思想是从任意一点开始,不断选择与当前生成树相邻的最短边,直到生成一棵包含所有点的最小生成树。 下面是Prim算法的Python实现: python def prim(graph): # 初始化节点集合、边集合和已访问的节点集合 nodes = set(graph.keys()) edges = [] visited = set() # 从任意一个节点开始 current_node = nodes.pop() visited.add(current_node) # 对每个节点进行遍历 while nodes: # 获取当前节点相邻的边集合 adjacent_edges = [(weight, current_node, node) for node, weight in graph[current_node].items() if node in nodes] # 选择最短的边 weight, from_node, to_node = sorted(adjacent_edges)[0] # 将边添加到边集合中 edges.append((from_node, to_node, weight)) # 将当前节点添加到已访问的节点集合中 visited.add(to_node) # 将当前节点设置为新的节点 current_node = to_node # 从节点集合中删除已经访问过的节点 nodes.discard(current_node) return edges 2. Kruskal算法 Kruskal算法的基本思想是将所有边按照权重从小到大排序,然后依次加入生成树中,如果加入后形成环,则不加入。 下面是Kruskal算法的Python实现: python def kruskal(graph): # 初始化节点集合、边集合和并查集 nodes = set(graph.keys()) edges = [] disjoint_set = {node: {node} for node in nodes} # 将所有边按照权重排序 sorted_edges = sorted([(weight, from_node, to_node) for from_node, adjacent_nodes in graph.items() for to_node, weight in adjacent_nodes.items()]) # 遍历所有边 for weight, from_node, to_node in sorted_edges: # 判断边的两个端点是否已经在同一个集合中 if disjoint_set[from_node] & disjoint_set[to_node]: continue # 将边添加到边集合中 edges.append((from_node, to_node, weight)) # 合并两个集合 disjoint_set[from_node] |= disjoint_set[to_node] disjoint_set[to_node] = disjoint_set[from_node] return edges 以上就是Prim算法和Kruskal算法的Python实现。希望能对您有所帮助!
以下是C++实现Prim算法和Kruskal算法求最小生成树的示例代码: Prim算法: c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int MAXN = 1005; const int INF = 0x3f3f3f3f; int n; int g[MAXN][MAXN]; int d[MAXN]; bool vis[MAXN]; void prim(int s) { memset(d, INF, sizeof(d)); memset(vis, false, sizeof(vis)); d[s] = 0; priority_queue, vector>, greater>> pq; pq.push(make_pair(d[s], s)); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (vis[u]) continue; vis[u] = true; for (int v = 1; v <= n; v++) { if (g[u][v] < INF && !vis[v] && g[u][v] < d[v]) { d[v] = g[u][v]; pq.push(make_pair(d[v], v)); } } } } int main() { int m; cin >> n >> m; memset(g, INF, sizeof(g)); for (int i = 1; i <= m; i++) { int u, v, w; cin >> u >> v >> w; g[u][v] = g[v][u] = w; } prim(1); int ans = 0; for (int i = 1; i <= n; i++) { if (d[i] == INF) { cout << "No solution!" << endl; return 0; } ans += d[i]; } cout << ans << endl; return 0; } Kruskal算法: c++ #include <iostream> #include <algorithm> #include <vector> using namespace std; const int MAXN = 1005; int n; int fa[MAXN]; struct Edge { int u, v, w; bool operator<(const Edge& e) const { return w < e.w; } } edges[MAXN * MAXN]; int find(int x) { if (x == fa[x]) return x; return fa[x] = find(fa[x]); } int kruskal() { int ans = 0, cnt = 0; sort(edges, edges + n * (n - 1) / 2); for (int i = 1; i <= n; i++) fa[i] = i; for (int i = 0; i < n * (n - 1) / 2; i++) { int u = edges[i].u, v = edges[i].v, w = edges[i].w; int fu = find(u), fv = find(v); if (fu != fv) { fa[fu] = fv; ans += w; cnt++; if (cnt == n - 1) break; } } return ans; } int main() { int m; cin >> n >> m; for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; edges[i] = { u, v, w }; } cout << kruskal() << endl; return 0; }
### 回答1: Prim算法和Kruskal算法都是求解最小生成树的经典算法,但它们的实现方式和思路有所不同。 Prim算法是一种贪心算法,它从一个起点开始,每次选择与当前生成树距离最近的一个点加入生成树,直到所有点都被加入生成树为止。Prim算法的时间复杂度为O(n^2),其中n为节点数。 Kruskal算法也是一种贪心算法,它从所有边中选择权值最小的边加入生成树,直到生成树中包含所有节点为止。Kruskal算法的时间复杂度为O(mlogm),其中m为边数。 因此,Prim算法适用于稠密图,而Kruskal算法适用于稀疏图。同时,Prim算法的实现方式比Kruskal算法更简单,但Kruskal算法的时间复杂度更优秀。 ### 回答2: prim算法和kruskal算法都是解决最小生成树问题的经典算法,但是它们的具体实现方式以及解决问题的思路有所不同。 首先,prim算法是一种贪心算法,它的基本思想是从一个顶点开始,以该顶点为起点,不断选择与当前生成树相邻的最小权值的边所连接的顶点加入生成树中,直到生成树覆盖所有的顶点为止。prim算法中需要使用一个数组来记录已经加入生成树的顶点,以及一个数组来记录每个顶点与生成树之间的最小距离,这些数组的更新和维护需要从当前顶点出发,枚举所有相邻的边,找到最小的那条边,更新记录的信息。 与之不同的是,kruskal算法也是一种贪心算法,但它的实现方式更为简单。kruskal算法首先将图中的所有边按照权值从小到大排序,然后从权值最小的边开始,一条一条地将边加入生成树中,如果加入某条边之后形成的图不是生成树,则舍弃这条边并考虑下一条权值更大的边,直到生成树覆盖所有的顶点为止。kruskal算法实现的关键是使用并查集来判断当前要加入的边是否会构成环路,进而确定该边是否应该加入生成树中。 两种算法的时间复杂度都是O(E log E),其中E为边的数量,总体上来说prim算法的实现相对较为复杂,但它在密集图中的表现更好;而kruskal算法更简单,适用于稀疏图。此外,由于prim算法的实现涉及到了不同的数据结构操作,其空间复杂度也相对较高,而kruskal算法则只需要一个并查集数据结构即可。 总之,prim算法和kruskal算法是解决最小生成树问题的两种重要算法,其中prim算法需要借助一个单源最短路径算法来实现,并涉及到更加复杂的数据结构操作,而kruskal算法则相对更为简单直观,适合处理稀疏图。 ### 回答3: prim算法和kruskal算法是解决最小生成树问题(Minimum Spanning Tree)的两种经典算法。 1. 基本思路不同 Prim算法是一种贪心算法,从一个源点开始构造生成树,每次将新加入一个顶点的边的权值最小的边加入生成树中,直到所有的顶点都加入了生成树,生成树的总权值则是所有加入的边的权值之和。 Kruskal算法则不需要从一个源点开始构造生成树,而是将所有边按照权值从小到大排序,然后顺序加入生成树,当加入的边会和生成树中已有的边形成环时,该边就被舍弃,直到所有顶点都在生成树中。 2. 运行时间不同 Prim算法的时间复杂度为O(n^2)或者O(nlogn),其中n是图中节点的数量,如果使用堆等数据结构,则时间复杂度可以降至O(mlogn),其中m是图中边的数量,因此 Prim 算法适用于稠密图。 Kruskal算法的时间复杂度为O(mlogm),其中m是图中边的数量,因此 Kruskal 算法适用于稀疏的图。 3. 使用场景不同 Prim算法可以使用在连通图中寻找最小生成树,但是如果该图不连通,则需要对每个连通子图都执行一遍 Prim 算法,得到的最小生成树将合并。 Kruskal算法同样可以在连通图中寻找最小生成树,也可以应用在拓扑排序中,以及一些网络设计,电路设计等方面。 总的来说, Prim 算法和 Kruskal 算法虽然都是解决最小生成树问题的经典算法,但是在实际应用中会根据不同的场景和要求选择使用相应的算法。
Prim算法和Kruskal算法都是求解最小生成树的经典算法之一,这里我们分别介绍如何使用无向网的邻接矩阵存储结构实现这两个算法。 ## Prim算法 Prim算法是一种贪心算法,它从一个源节点开始不断扩展最小生成树的边,直到所有节点都被包含在最小生成树中。具体实现步骤如下: 1. 初始化最小生成树的边集为空集,将源节点加入最小生成树中。 2. 对于不在最小生成树中的节点,计算它们与最小生成树中节点的连边的权值,选择权值最小的边加入最小生成树中。 3. 重复步骤2,直到所有节点都被包含在最小生成树中。 下面是使用C++实现Prim算法的代码: cpp #include <iostream> #include <vector> #include <climits> using namespace std; const int MAXN = 100; // 最大节点数 const int INF = INT_MAX; // 无穷大 int graph[MAXN][MAXN]; // 无向网的邻接矩阵 bool visited[MAXN]; // 节点是否被访问过 int dist[MAXN]; // 节点到最小生成树的距离 int parent[MAXN]; // 最小生成树中节点的父节点 void prim(int start, int n) { // 初始化 for (int i = 0; i < n; i++) { visited[i] = false; dist[i] = INF; parent[i] = -1; } dist[start] = 0; // 按照Prim算法,不断扩展最小生成树 for (int i = 0; i < n; i++) { // 找到距离最小的节点 int minDist = INF, minIndex = -1; for (int j = 0; j < n; j++) { if (!visited[j] && dist[j] < minDist) { minDist = dist[j]; minIndex = j; } } // 将节点加入最小生成树中 visited[minIndex] = true; for (int j = 0; j < n; j++) { if (!visited[j] && graph[minIndex][j] < dist[j]) { dist[j] = graph[minIndex][j]; parent[j] = minIndex; } } } } int main() { int n = 6; // 节点数 // 初始化邻接矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { graph[i][j] = INF; } } graph[0][1] = graph[1][0] = 6; graph[0][2] = graph[2][0] = 1; graph[0][3] = graph[3][0] = 5; graph[1][2] = graph[2][1] = 5; graph[1][4] = graph[4][1] = 3; graph[2][3] = graph[3][2] = 5; graph[2][4] = graph[4][2] = 6; graph[2][5] = graph[5][2] = 4; graph[3][5] = graph[5][3] = 2; graph[4][5] = graph[5][4] = 6; prim(0, n); int sum = 0; for (int i = 0; i < n; i++) { if (parent[i] != -1) { cout << parent[i] << "-" << i << " " << graph[parent[i]][i] << endl; sum += graph[parent[i]][i]; } } cout << "Weight of MST: " << sum << endl; return 0; } ## Kruskal算法 Kruskal算法也是一种贪心算法,它从所有边中选择权值最小的边,依次加入最小生成树中,直到所有节点都被包含在最小生成树中。具体实现步骤如下: 1. 初始化最小生成树的边集为空集。 2. 将所有边按照权值从小到大排序。 3. 依次选择每条边,如果它的两个端点不在同一个连通分量中,则将它加入最小生成树中,否则跳过。 4. 重复步骤3,直到所有节点都被包含在最小生成树中。 下面是使用C++实现Kruskal算法的代码: cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; const int MAXN = 100; // 最大节点数 const int INF = INT_MAX; // 无穷大 struct Edge { int from, to, weight; bool operator<(const Edge& other) const { return weight < other.weight; } }; int parent[MAXN]; // 节点的父节点 int rank[MAXN]; // 节点所在集合的秩 int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); } return parent[x]; } void unionSet(int x, int y) { int rootX = find(x); int rootY = find(y); if (rootX == rootY) return; if (rank[rootX] < rank[rootY]) { swap(rootX, rootY); } parent[rootY] = rootX; if (rank[rootX] == rank[rootY]) { rank[rootX]++; } } vector<Edge> kruskal(int n, vector<Edge>& edges) { // 初始化 for (int i = 0; i < n; i++) { parent[i] = i; rank[i] = 0; } // 将边按照权值从小到大排序 sort(edges.begin(), edges.end()); // 依次选择每条边 vector<Edge> result; for (Edge edge : edges) { if (find(edge.from) != find(edge.to)) { result.push_back(edge); unionSet(edge.from, edge.to); } } return result; } int main() { int n = 6; // 节点数 // 初始化边 vector<Edge> edges = { {0, 1, 6}, {0, 2, 1}, {0, 3, 5}, {1, 2, 5}, {1, 4, 3}, {2, 3, 5}, {2, 4, 6}, {2, 5, 4}, {3, 5, 2}, {4, 5, 6} }; vector<Edge> result = kruskal(n, edges); int sum = 0; for (Edge edge : result) { cout << edge.from << "-" << edge.to << " " << edge.weight << endl; sum += edge.weight; } cout << "Weight of MST: " << sum << endl; return 0; }
好的,下面我会分别介绍普里姆算法和克鲁斯卡尔算法,并给出它们的代码实现。 ### 普里姆算法 普里姆算法是一种贪心算法,用于求解加权无向连通图的最小生成树。该算法从任意一个顶点开始,每次选择一条权值最小的边,将其加入到生成树中,直到所有顶点都被加入到生成树中为止。 普里姆算法的时间复杂度为 $O(ElogV)$,其中 $V$ 表示顶点数,$E$ 表示边数。 下面是普里姆算法的 Python 代码实现: python import heapq def prim(graph, start): mst = [] # 用于存储最小生成树的边 visited = set([start]) # 记录已经访问过的节点 candidates = [(weight, start, end) for end, weight in graph[start].items()] heapq.heapify(candidates) # 将初始的候选边加入小根堆中 while candidates: weight, start, end = heapq.heappop(candidates) if end not in visited: # 如果当前边的终点没有被访问过 visited.add(end) mst.append((start, end, weight)) for next_end, weight in graph[end].items(): if next_end not in visited: heapq.heappush(candidates, (weight, end, next_end)) # 将新的候选边加入小根堆中 return mst 其中,graph 是一个字典,表示图的邻接表形式,start 是起始节点的编号。 ### 克鲁斯卡尔算法 克鲁斯卡尔算法也是一种贪心算法,用于求解加权无向连通图的最小生成树。该算法的基本思想是,将所有边按照权值从小到大排序,依次取出每条边,如果这条边的两个端点不在同一个连通块中,就将它们合并,直到所有节点都在同一个连通块中为止。 克鲁斯卡尔算法的时间复杂度为 $O(ElogE)$,其中 $E$ 表示边数。 下面是克鲁斯卡尔算法的 Python 代码实现: python def kruskal(graph): edges = [(weight, start, end) for start in graph for end, weight in graph[start].items()] edges.sort() # 将所有边按照权值从小到大排序 parent = {node: node for node in graph} # 用于记录每个节点的父节点 mst = [] # 用于存储最小生成树的边 for weight, start, end in edges: while start != parent[start]: # 找到 start 的根节点 start = parent[start] while end != parent[end]: # 找到 end 的根节点 end = parent[end] if start != end: # 如果 start 和 end 不在同一个连通块中 mst.append((start, end, weight)) parent[end] = start # 将 end 的根节点设为 start 的根节点 return mst 其中,graph 是一个字典,表示图的邻接表形式。

最新推荐

C++使用Kruskal和Prim算法实现最小生成树

主要介绍了C++使用Kruskal和Prim算法实现最小生成树,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

存储毕业设计的安卓端APP(使用java语言).zip

存储毕业设计的安卓端APP(使用java语言)

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督视觉表示学习中的时态知识一致性算法

无监督视觉表示学习中的时态知识一致性维信丰酒店1* 元江王2*†马丽华2叶远2张驰2北京邮电大学1旷视科技2网址:fengweixin@bupt.edu.cn,wangyuanjiang@megvii.com{malihua,yuanye,zhangchi} @ megvii.com摘要实例判别范式在无监督学习中已成为它通常采用教师-学生框架,教师提供嵌入式知识作为对学生的监督信号。学生学习有意义的表征,通过加强立场的空间一致性与教师的意见。然而,在不同的训练阶段,教师的输出可以在相同的实例中显著变化,引入意外的噪声,并导致由不一致的目标引起的灾难性的本文首先将实例时态一致性问题融入到现有的实例判别范式中 , 提 出 了 一 种 新 的 时 态 知 识 一 致 性 算 法 TKC(Temporal Knowledge Consis- tency)。具体来说,我们的TKC动态地集成的知识的时间教师和自适应地选择有用的信息,根据其重要性学习实例的时间一致性。

create or replace procedure这句语句后面是自定义么

### 回答1: 是的,"create or replace procedure"语句后面应该跟着自定义的存储过程名。例如: ```sql create or replace procedure my_procedure_name ``` 这里"my_procedure_name"是你自己定义的存储过程名,可以根据具体需求进行命名。 ### 回答2: 不完全是自定义。在Oracle数据库中,"CREATE OR REPLACE PROCEDURE"是一条SQL语句,用于创建或替换一个存储过程。关键词"CREATE"表示创建新的存储过程,关键词"OR REPLACE"表示如果该存储过程

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

基于对比检测的高效视觉预训练

10086⇥⇥⇥⇥基于对比检测的高效视觉预训练Ol i vierJ. He´naf f SkandaKoppula Jean-BaptisteAlayracAaronvandenOord OriolVin yals JoaoCarreiraDeepMind,英国摘要自我监督预训练已被证明可以为迁移学习提供然而,这些性能增益是以大的计算成本来实现的,其中最先进的方法需要比监督预训练多一个数量级的计算。我们通过引入一种新的自监督目标,对比检测,任务表示与识别对象级功能跨增强来解决这个计算瓶颈。该目标可提取每幅图像的丰富学习信号,从而在各种下游任务上实现最先进的传输精度,同时需要高达10少训练特别是,我们最强的ImageNet预训练模型的性能与SEER相当,SEER是迄今为止最大的自监督系统之一,它使用了1000多个预训练数据。最后,我们的目标无缝地处理更复杂图像的预训练,例如COCO中的图像,缩小了从COCO到PASCAL的监督迁移学习的差距1. 介绍自从Al

java 两个List<Integer> 数据高速去重

### 回答1: 可以使用 Set 来高效去重,具体代码如下: ```java List<Integer> list1 = new ArrayList<>(); List<Integer> list2 = new ArrayList<>(); // 假设 list1 和 list2 已经被填充了数据 Set<Integer> set = new HashSet<>(); set.addAll(list1); set.addAll(list2); List<Integer> resultList = new ArrayList<>(set); ``` 这样可以将两个 List 合并去重

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

增量学习的分离Softmax用于解决类增量学习中的遗忘和分类偏差问题

844SS-IL:用于增量学习的分离SoftmaxHongjoon Ahn1 *、Jihwan Kwak4 *、Subin Lim3、Hyeonsu Bang1、Hyojun Kim2和TaesupMoon4†1人工智能系,2电子电气工程系3韩国水原成均馆大学计算机工程系4韩国首尔国立大学电气与计算机工程系{hong0805,tnqls985,bhs1996,leopard101}@ skku.edu{jihwan0508,tsoon}@ snu.ac.kr摘要我们认为类增量学习(CIL)的问题,其中学习代理不断学习新的类增量到达的训练数据批次,并旨在预测到目前为止学习的所有类。该问题的主要挑战是灾难性遗忘,并且对于基于样本记忆的CIL方法,通常已知的是,遗忘通常由由于新类和旧类之间的数据不平衡(在样本记忆中)而注入的分类得分偏差引起。虽然已经提出了几种方法来通过一些附加的后处理来校正这种分数偏差,然而,尽管存在着对分数重新调整或平衡微调的不确定性,但尚未对这种偏差的根本原因进行系统�